adam_op_npu.cc 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/optimizers/adam_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

template <typename DeviceContext, typename T>
class AdamNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "The Var(%s)'s type should be LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Param").front(),
                          framework::ToTypeName(param_var->Type())));
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
    auto* param = ctx.Input<LoDTensor>("Param");
    auto* grad_var = ctx.InputVar("Grad");
    PADDLE_ENFORCE_EQ(grad_var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "The Grad(%s)'s type should be LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Grad").front(),
                          framework::ToTypeName(param_var->Type())));
    auto* grad = ctx.Input<LoDTensor>("Grad");
    auto* mom1 = ctx.Input<LoDTensor>("Moment1");
    auto* mom2 = ctx.Input<LoDTensor>("Moment2");
    auto* lr = ctx.Input<LoDTensor>("LearningRate");

    auto* beta1_pow = ctx.Input<LoDTensor>("Beta1Pow");
    auto* beta2_pow = ctx.Input<LoDTensor>("Beta2Pow");

    auto* param_out = ctx.Output<LoDTensor>("ParamOut");
    auto* mom1_out = ctx.Output<LoDTensor>("Moment1Out");
    auto* mom2_out = ctx.Output<LoDTensor>("Moment2Out");
    auto* beta1_pow_out = ctx.Output<LoDTensor>("Beta1PowOut");
    auto* beta2_pow_out = ctx.Output<LoDTensor>("Beta2PowOut");

    param_out->mutable_data<T>(ctx.GetPlace());
    mom1_out->mutable_data<T>(ctx.GetPlace());
    mom2_out->mutable_data<T>(ctx.GetPlace());
64 65
    beta1_pow_out->mutable_data<T>(ctx.GetPlace());
    beta2_pow_out->mutable_data<T>(ctx.GetPlace());
66 67 68

    // NOTE(zhiqiu): beta1_pow and beta2_pow may on CPU and not transform place.
    if (beta1_pow->place() == platform::CPUPlace()) {
69 70
      T beta1 = *beta1_pow->data<T>();
      FillNpuTensorWithConstant<T>(beta1_pow_out, beta1);
71 72
    }
    if (beta2_pow->place() == platform::CPUPlace()) {
73 74
      T beta2 = *beta2_pow->data<T>();
      FillNpuTensorWithConstant<T>(beta2_pow_out, beta2);
75
    }
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    if (ctx.HasInput("Beta1Tensor")) {
      auto* beta1_tensor = ctx.Input<framework::Tensor>("Beta1Tensor");
      PADDLE_ENFORCE_EQ(beta1_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(Beta1Tensor) size must be 1, but get %d",
                            beta1_tensor->numel()));
      beta1 = static_cast<T>(GetAttrFromTensor(beta1_tensor));
    }
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    if (ctx.HasInput("Beta2Tensor")) {
      auto* beta2_tensor = ctx.Input<framework::Tensor>("Beta2Tensor");
      PADDLE_ENFORCE_EQ(beta2_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(Beta2Tensor) size must be 1, but get %d",
                            beta2_tensor->numel()));
      beta2 = static_cast<T>(GetAttrFromTensor(beta2_tensor));
    }
    VLOG(3) << "beta1_pow.numel() : " << beta1_pow->numel()
            << "beta2_pow.numel() : " << beta2_pow->numel();
    VLOG(3) << "param.numel(): " << param->numel();

    PADDLE_ENFORCE_EQ(beta1_pow_out->numel(), 1,
                      platform::errors::InvalidArgument(
                          "beta1 pow output size should be 1, but received "
                          "value is:%d.",
                          beta1_pow_out->numel()));

    PADDLE_ENFORCE_EQ(beta2_pow_out->numel(), 1,
                      platform::errors::InvalidArgument(
                          "beta2 pow output size should be 1, but received "
                          "value is:%d.",
                          beta2_pow_out->numel()));

    // reshape
    Tensor beta1_tensor(framework::proto::VarType::FP32);
113 114
    beta1_tensor.mutable_data<T>({1}, ctx.GetPlace());
    FillNpuTensorWithConstant<T>(&beta1_tensor, beta1);
115
    Tensor beta2_tensor(framework::proto::VarType::FP32);
116 117
    beta2_tensor.mutable_data<T>({1}, ctx.GetPlace());
    FillNpuTensorWithConstant<T>(&beta2_tensor, beta2);
118 119 120

    Tensor epsilon_tensor(framework::proto::VarType::FP32);
    epsilon_tensor.mutable_data<T>({1}, ctx.GetPlace());
121
    FillNpuTensorWithConstant<T>(&epsilon_tensor, epsilon);
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    auto runner =
        NpuOpRunner("ApplyAdamD",
                    {
                        *param, *mom1, *mom2, *beta1_pow, *beta2_pow, *lr,
                        beta1_tensor, beta2_tensor, epsilon_tensor, *grad,
                    },
                    {
                        *param_out, *mom1_out, *mom2_out,
                    },
                    {});
    runner.Run(stream);

    // NOTE(zhiqiu): ApplyAdamD updates params inplace, so
    // if param and param_out is not same, we need to do copy.
    if (param_out->data<T>() != param->data<T>()) {
140 141 142
      framework::TensorCopy(
          *param, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), param_out);
143 144
    }
    if (mom1_out->data<T>() != mom1->data<T>()) {
145 146 147
      framework::TensorCopy(
          *mom1, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), mom1_out);
148 149
    }
    if (mom2_out->data<T>() != mom2->data<T>()) {
150 151 152
      framework::TensorCopy(
          *mom2, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), mom2_out);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    }
    auto runner_m1 =
        NpuOpRunner("Mul", {*beta1_pow, beta1_tensor}, {*beta1_pow_out}, {});
    runner_m1.Run(stream);
    auto runner_m2 =
        NpuOpRunner("Mul", {*beta2_pow, beta2_tensor}, {*beta2_pow_out}, {});
    runner_m2.Run(stream);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    adam, ops::AdamNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::AdamNPUKernel<paddle::platform::NPUDeviceContext,
                       paddle::platform::float16>);