sharding_utils.py 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import contextlib
from collections import abc
from enum import Enum
from math import inf
20 21
import numpy as np
from types import MethodType
22 23 24

import paddle
import paddle.distributed as dist
25
from paddle import _C_ops
26
from paddle.fluid import core
27 28 29 30
from paddle.fluid import layers
from paddle.fluid.dygraph import to_variable
from paddle.fluid.framework import dygraph_only
from paddle.fluid.dygraph import base as imperative_base
31
from paddle.distributed.collective import _get_global_group
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51


class Taskflow:
    """
    Task flows, one way linked list for task acquisition.
    """

    def __init__(self, task, callback):
        self.task = task
        self.callback = callback


class Type(Enum):
    """
    Type of trainable parameters
    """
    fp16 = paddle.float16
    fp32 = paddle.float32


52
class ShardingClipGrad:
53
    def __init__(self, clip, device, group):
54 55
        self._clip = clip
        self._device = device
56
        self._group = group
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

    @imperative_base.no_grad
    def _dygraph_clip(self, params_grads):
        params_and_grads = []

        sum_square_fp16 = []
        sum_square_fp32 = []

        for p, g in params_grads:
            if g is None or getattr(p, 'need_clip', True) is False:
                continue

            merge_grad = g
            if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                merge_grad = layers.get_tensor_from_selected_rows(
                    layers.merge_selected_rows(g))
            square = layers.square(merge_grad)
            sum_square = layers.reduce_sum(square)

            if p.dtype == paddle.float16:
                sum_square_fp16.append(sum_square)
            elif p.dtype == paddle.float32:
                sum_square_fp32.append(sum_square)

        # global norm of non-distributed FP16 params_and_grads
        if len(sum_square_fp16) == 0:
            global_norm_fp16 = paddle.to_tensor([0.], dtype=paddle.float32)
        else:
            global_norm_fp16 = layers.concat(sum_square_fp16)
            global_norm_fp16 = layers.reduce_sum(global_norm_fp16)
            global_norm_fp16 = paddle.cast(
                global_norm_fp16, dtype=paddle.float32)

        # global norm of non-distributed FP32 params_and_grads
        global_norm_fp32 = layers.concat(sum_square_fp32) if len(
            sum_square_fp32) != 0 else paddle.to_tensor(
                [0.], dtype=paddle.float32)
        global_norm_fp32 = layers.reduce_sum(global_norm_fp32)

        global_norm_var = global_norm_fp16 + global_norm_fp32

        # add all reduce to get global norm of distributed params_and_grads
        dev_id = int(self._device.split(":")[1])
        with device_guard(dev_id, "gpu"):
            paddle.distributed.all_reduce(global_norm_var, group=self._group)

        global_norm_var = layers.sqrt(global_norm_var)
        max_global_norm = layers.fill_constant(
            shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm)

        clip_var = layers.elementwise_div(
            x=max_global_norm,
            y=layers.elementwise_max(
                x=global_norm_var, y=max_global_norm))
        clip_var_fp16 = paddle.cast(clip_var, paddle.float16)

        for p, g in params_grads:
            if g is None:
                continue
            if getattr(p, 'need_clip', True) is False:
                params_and_grads.append((p, g))
                continue
            if p.dtype == paddle.float16:
                new_grad = layers.elementwise_mul(x=g, y=clip_var_fp16)
            else:
                new_grad = layers.elementwise_mul(x=g, y=clip_var)
            params_and_grads.append((p, new_grad))

        return params_and_grads

    def __getattr__(self, item):
        return getattr(self._clip, item)

    def __call__(self, params_grads):
        return self._dygraph_clip(params_grads)


134
@contextlib.contextmanager
135
def device_guard(dev_id=0, device="cpu"):
136 137 138 139 140 141 142 143 144
    origin_device = paddle.device.get_device()
    if device == "cpu":
        paddle.set_device(device)
    elif device == "gpu":
        paddle.set_device("gpu:{}".format(dev_id))
    try:
        yield
    finally:
        paddle.set_device(origin_device)
145 146 147


@dygraph_only
148
def ShardingScaler(scaler):
149 150 151 152 153 154 155
    def unscale_method(self, optimizer):
        if not self._enable:
            return
        param_grads = []
        param_grads_fp16 = []
        param_grads_fp32 = []

156 157
        if getattr(optimizer._optim, '_param_groups', None) and isinstance(
                optimizer._optim._param_groups[0], dict):
158

159
            for group in optimizer._optim._param_groups:
160 161 162 163 164 165 166 167 168 169
                for param in group['params']:
                    if param._grad_ivar() is not None:
                        param_grads.append(param._grad_ivar())
                        if param._grad_ivar(
                        ).dtype == core.VarDesc.VarType.FP16:
                            param_grads_fp16.append(param._grad_ivar())
                        else:
                            param_grads_fp32.append(param._grad_ivar())
        else:
            param_grads = [
170
                param._grad_ivar() for param in optimizer._optim._parameter_list
171 172 173
                if param._grad_ivar() is not None
            ]
            param_grads_fp16 = [
174
                param._grad_ivar() for param in optimizer._optim._parameter_list
175 176 177 178 179
                if (param._grad_ivar() is not None
                    ) and (param._grad_ivar().dtype == core.VarDesc.VarType.FP16
                           )
            ]
            param_grads_fp32 = [
180
                param._grad_ivar() for param in optimizer._optim._parameter_list
181 182 183 184 185 186
                if (param._grad_ivar() is not None
                    ) and (param._grad_ivar().dtype == core.VarDesc.VarType.FP32
                           )
            ]
        temp_found_inf_fp16 = to_variable(np.array([0]).astype(np.bool))
        temp_found_inf_fp32 = to_variable(np.array([0]).astype(np.bool))
187 188 189 190 191 192 193 194 195 196 197 198 199 200

        device = "cpu" if optimizer.offload else "gpu"
        dev_id = 0 if device == "cpu" else int(paddle.get_device().split(":")[
            1])

        with device_guard(dev_id, device):
            if len(param_grads_fp16):
                _C_ops.check_finite_and_unscale(param_grads_fp16, self._scale,
                                                param_grads_fp16,
                                                temp_found_inf_fp16)
            if len(param_grads_fp32):
                _C_ops.check_finite_and_unscale(param_grads_fp32, self._scale,
                                                param_grads_fp32,
                                                temp_found_inf_fp32)
201 202 203 204 205 206 207

        self._found_inf = 1 if temp_found_inf_fp16 or temp_found_inf_fp32 else 0
        is_found_inf = paddle.to_tensor([self._found_inf], dtype="int32")

        paddle.distributed.all_reduce(
            is_found_inf,
            op=paddle.distributed.ReduceOp.MAX,
208
            group=optimizer.group)
209 210 211 212
        self._found_inf = is_found_inf.numpy()[0]

    scaler._unscale = MethodType(unscale_method, scaler)
    return scaler