sharding_utils.py 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import contextlib
from collections import abc
from enum import Enum
from math import inf
20 21
import numpy as np
from types import MethodType
22 23 24

import paddle
import paddle.distributed as dist
25
from paddle import _C_ops
26
from paddle.fluid import core
27 28 29 30
from paddle.fluid import layers
from paddle.fluid.dygraph import to_variable
from paddle.fluid.framework import dygraph_only
from paddle.fluid.dygraph import base as imperative_base
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


class Taskflow:
    """
    Task flows, one way linked list for task acquisition.
    """

    def __init__(self, task, callback):
        self.task = task
        self.callback = callback


class Type(Enum):
    """
    Type of trainable parameters
    """
    fp16 = paddle.float16
    fp32 = paddle.float32


51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
class ShardingClipGrad:
    def __init__(self, clip, group, device):
        self._clip = clip
        self._group = group
        self._device = device

    @imperative_base.no_grad
    def _dygraph_clip(self, params_grads):
        params_and_grads = []

        sum_square_fp16 = []
        sum_square_fp32 = []

        for p, g in params_grads:
            if g is None or getattr(p, 'need_clip', True) is False:
                continue

            merge_grad = g
            if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                merge_grad = layers.get_tensor_from_selected_rows(
                    layers.merge_selected_rows(g))
            square = layers.square(merge_grad)
            sum_square = layers.reduce_sum(square)

            if p.dtype == paddle.float16:
                sum_square_fp16.append(sum_square)
            elif p.dtype == paddle.float32:
                sum_square_fp32.append(sum_square)

        # global norm of non-distributed FP16 params_and_grads
        if len(sum_square_fp16) == 0:
            global_norm_fp16 = paddle.to_tensor([0.], dtype=paddle.float32)
        else:
            global_norm_fp16 = layers.concat(sum_square_fp16)
            global_norm_fp16 = layers.reduce_sum(global_norm_fp16)
            global_norm_fp16 = paddle.cast(
                global_norm_fp16, dtype=paddle.float32)

        # global norm of non-distributed FP32 params_and_grads
        global_norm_fp32 = layers.concat(sum_square_fp32) if len(
            sum_square_fp32) != 0 else paddle.to_tensor(
                [0.], dtype=paddle.float32)
        global_norm_fp32 = layers.reduce_sum(global_norm_fp32)

        global_norm_var = global_norm_fp16 + global_norm_fp32

        # add all reduce to get global norm of distributed params_and_grads
        dev_id = int(self._device.split(":")[1])
        with device_guard(dev_id, "gpu"):
            paddle.distributed.all_reduce(global_norm_var, group=self._group)

        global_norm_var = layers.sqrt(global_norm_var)
        max_global_norm = layers.fill_constant(
            shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm)

        clip_var = layers.elementwise_div(
            x=max_global_norm,
            y=layers.elementwise_max(
                x=global_norm_var, y=max_global_norm))
        clip_var_fp16 = paddle.cast(clip_var, paddle.float16)

        for p, g in params_grads:
            if g is None:
                continue
            if getattr(p, 'need_clip', True) is False:
                params_and_grads.append((p, g))
                continue
            if p.dtype == paddle.float16:
                new_grad = layers.elementwise_mul(x=g, y=clip_var_fp16)
            else:
                new_grad = layers.elementwise_mul(x=g, y=clip_var)
            params_and_grads.append((p, new_grad))

        return params_and_grads

    def __getattr__(self, item):
        return getattr(self._clip, item)

    def __call__(self, params_grads):
        return self._dygraph_clip(params_grads)


133
@contextlib.contextmanager
134
def device_guard(dev_id=0, device="cpu"):
135 136 137 138 139 140 141 142 143
    origin_device = paddle.device.get_device()
    if device == "cpu":
        paddle.set_device(device)
    elif device == "gpu":
        paddle.set_device("gpu:{}".format(dev_id))
    try:
        yield
    finally:
        paddle.set_device(origin_device)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205


@dygraph_only
def ShardingScaler(scaler, sharding_group):
    def unscale_method(self, optimizer):
        if not self._enable:
            return
        param_grads = []
        param_grads_fp16 = []
        param_grads_fp32 = []

        if getattr(optimizer, '_param_groups', None) and isinstance(
                optimizer._param_groups[0], dict):

            for group in optimizer._param_groups:
                for param in group['params']:
                    if param._grad_ivar() is not None:
                        param_grads.append(param._grad_ivar())
                        if param._grad_ivar(
                        ).dtype == core.VarDesc.VarType.FP16:
                            param_grads_fp16.append(param._grad_ivar())
                        else:
                            param_grads_fp32.append(param._grad_ivar())
        else:
            param_grads = [
                param._grad_ivar() for param in optimizer._parameter_list
                if param._grad_ivar() is not None
            ]
            param_grads_fp16 = [
                param._grad_ivar() for param in optimizer._parameter_list
                if (param._grad_ivar() is not None
                    ) and (param._grad_ivar().dtype == core.VarDesc.VarType.FP16
                           )
            ]
            param_grads_fp32 = [
                param._grad_ivar() for param in optimizer._parameter_list
                if (param._grad_ivar() is not None
                    ) and (param._grad_ivar().dtype == core.VarDesc.VarType.FP32
                           )
            ]
        temp_found_inf_fp16 = to_variable(np.array([0]).astype(np.bool))
        temp_found_inf_fp32 = to_variable(np.array([0]).astype(np.bool))
        if len(param_grads_fp16):
            _C_ops.check_finite_and_unscale(param_grads_fp16, self._scale,
                                            param_grads_fp16,
                                            temp_found_inf_fp16)
        if len(param_grads_fp32):
            _C_ops.check_finite_and_unscale(param_grads_fp32, self._scale,
                                            param_grads_fp32,
                                            temp_found_inf_fp32)

        self._found_inf = 1 if temp_found_inf_fp16 or temp_found_inf_fp32 else 0
        is_found_inf = paddle.to_tensor([self._found_inf], dtype="int32")

        paddle.distributed.all_reduce(
            is_found_inf,
            op=paddle.distributed.ReduceOp.MAX,
            group=sharding_group)
        self._found_inf = is_found_inf.numpy()[0]

    scaler._unscale = MethodType(unscale_method, scaler)
    return scaler