test_imperative_resnet.py 13.0 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
23
from paddle.fluid.layer_helper import LayerHelper
M
minqiyang 已提交
24 25 26 27
from paddle.fluid.imperative.nn import Conv2D, Pool2D, BatchNorm, FC
from paddle.fluid.imperative.base import to_variable
from test_imperative_base import new_program_scope

28
batch_size = 8
M
minqiyang 已提交
29 30 31 32 33 34
train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
M
minqiyang 已提交
35
        "batch_size": batch_size,
M
minqiyang 已提交
36 37
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
M
minqiyang 已提交
38
    },
M
minqiyang 已提交
39
    "batch_size": batch_size,
M
minqiyang 已提交
40 41
    "lr": 0.1,
    "total_images": 1281164,
M
minqiyang 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
}


def optimizer_setting(params):
    ls = params["learning_strategy"]
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
            total_images = 1281167
        else:
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)

        bd = [step * e for e in ls["epochs"]]
        base_lr = params["lr"]
        lr = []
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
59
        optimizer = fluid.optimizer.SGD(learning_rate=0.01)
M
minqiyang 已提交
60
        # TODO(minqiyang): Add learning rate scheduler support to imperative mode
M
minqiyang 已提交
61 62 63 64 65 66
        #  optimizer = fluid.optimizer.Momentum(
    #  learning_rate=params["lr"],
    #  learning_rate=fluid.layers.piecewise_decay(
    #  boundaries=bd, values=lr),
    #  momentum=0.9,
    #  regularization=fluid.regularizer.L2Decay(1e-4))
M
minqiyang 已提交
67 68 69 70 71

    return optimizer


class ConvBNLayer(fluid.imperative.Layer):
M
minqiyang 已提交
72 73 74 75 76 77 78
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
M
minqiyang 已提交
79 80 81
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
M
minqiyang 已提交
82 83 84 85 86
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
M
minqiyang 已提交
87 88 89 90
            groups=groups,
            act=None,
            bias_attr=None)

91
        self._batch_norm = BatchNorm(num_filters, act=act)
M
minqiyang 已提交
92 93 94

    def forward(self, inputs):
        y = self._conv(inputs)
95
        y = self._batch_norm(y)
M
minqiyang 已提交
96 97 98 99 100

        return y


class BottleneckBlock(fluid.imperative.Layer):
M
minqiyang 已提交
101
    def __init__(self, num_channels, num_filters, stride, shortcut=True):
M
minqiyang 已提交
102 103 104
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
M
minqiyang 已提交
105 106 107 108
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act='relu')
M
minqiyang 已提交
109
        self.conv1 = ConvBNLayer(
M
minqiyang 已提交
110 111 112 113 114
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu')
M
minqiyang 已提交
115
        self.conv2 = ConvBNLayer(
M
minqiyang 已提交
116 117 118 119
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None)
M
minqiyang 已提交
120

M
minqiyang 已提交
121
        if not shortcut:
M
minqiyang 已提交
122
            self.short = ConvBNLayer(
M
minqiyang 已提交
123 124 125 126
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride)
M
minqiyang 已提交
127 128 129

        self.shortcut = shortcut

M
minqiyang 已提交
130 131
        self._num_channels_out = num_filters * 4

M
minqiyang 已提交
132
    def forward(self, inputs):
M
minqiyang 已提交
133 134 135
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
M
minqiyang 已提交
136 137

        if self.shortcut:
M
minqiyang 已提交
138 139 140
            short = inputs
        else:
            short = self.short(inputs)
M
minqiyang 已提交
141

M
minqiyang 已提交
142 143 144
        y = fluid.layers.elementwise_add(x=short, y=conv2)

        layer_helper = LayerHelper('elementwise_add_activation', act='relu')
M
minqiyang 已提交
145
        return layer_helper.append_activation(y)
M
minqiyang 已提交
146 147 148


class ResNet(fluid.imperative.Layer):
M
minqiyang 已提交
149
    def __init__(self, layers=50, class_dim=102):
M
minqiyang 已提交
150 151
        super(ResNet, self).__init__()

M
minqiyang 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165
        self.layers = layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_filters = [64, 128, 256, 512]

        self.conv = ConvBNLayer(
M
minqiyang 已提交
166
            num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu')
M
minqiyang 已提交
167 168 169
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

M
minqiyang 已提交
170 171 172 173 174
        self.bottleneck_block_list = []
        num_channels = 64
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
X
Xin Pan 已提交
175 176 177 178 179 180 181
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        num_channels=num_channels,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        shortcut=shortcut))
M
minqiyang 已提交
182 183 184 185 186 187
                num_channels = bottleneck_block._num_channels_out
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)
M
minqiyang 已提交
188 189 190 191 192 193 194 195 196 197 198 199

        import math
        stdv = 1.0 / math.sqrt(2048 * 1.0)

        self.out = FC(size=class_dim,
                      act='softmax',
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.Uniform(-stdv, stdv)))

    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
M
minqiyang 已提交
200 201 202
        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
M
minqiyang 已提交
203
        y = self.out(y)
M
minqiyang 已提交
204 205 206 207
        return y


class TestImperativeResnet(unittest.TestCase):
M
minqiyang 已提交
208
    def test_resnet_float32(self):
M
minqiyang 已提交
209 210
        seed = 90

211
        batch_size = train_parameters["batch_size"]
M
minqiyang 已提交
212
        batch_num = 1
M
minqiyang 已提交
213
        with fluid.imperative.guard():
214 215 216 217 218 219 220 221 222 223 224 225 226
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            resnet = ResNet()
            optimizer = optimizer_setting(train_parameters)
            np.random.seed(seed)
            import random
            random.seed = seed
            train_reader = paddle.batch(
                paddle.dataset.flowers.train(use_xmap=False),
                batch_size=batch_size)

            dy_param_init_value = {}
X
Xin Pan 已提交
227
            for param in resnet.parameters():
228 229 230
                dy_param_init_value[param.name] = param._numpy()

            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
231
                if batch_id >= batch_num:
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
                    break

                dy_x_data = np.array(
                    [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    batch_size, 1)

                img = to_variable(dy_x_data)
                label = to_variable(y_data)
                label._stop_gradient = True

                out = resnet(img)
                loss = fluid.layers.cross_entropy(input=out, label=label)
                avg_loss = fluid.layers.mean(x=loss)

                dy_out = avg_loss._numpy()

                if batch_id == 0:
X
Xin Pan 已提交
250
                    for param in resnet.parameters():
251 252 253 254 255 256
                        if param.name not in dy_param_init_value:
                            dy_param_init_value[param.name] = param._numpy()

                avg_loss._backward()

                dy_grad_value = {}
X
Xin Pan 已提交
257
                for param in resnet.parameters():
258 259 260 261 262 263 264
                    if not param.stop_gradient:
                        np_array = np.array(param._ivar._grad_ivar().value()
                                            .get_tensor())
                        dy_grad_value[param.name + core.grad_var_suffix(
                        )] = np_array

                optimizer.minimize(avg_loss)
M
minqiyang 已提交
265
                resnet.clear_gradients()
266 267

                dy_param_value = {}
X
Xin Pan 已提交
268
                for param in resnet.parameters():
269
                    dy_param_value[param.name] = param._numpy()
M
minqiyang 已提交
270 271

        with new_program_scope():
M
minqiyang 已提交
272 273 274
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
275 276
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
277 278 279

            resnet = ResNet()
            optimizer = optimizer_setting(train_parameters)
M
minqiyang 已提交
280 281 282 283

            np.random.seed(seed)
            import random
            random.seed = seed
284
            train_reader = paddle.batch(
M
minqiyang 已提交
285 286
                paddle.dataset.flowers.train(use_xmap=False),
                batch_size=batch_size)
287 288 289 290 291 292 293 294 295 296 297 298

            img = fluid.layers.data(
                name='pixel', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            out = resnet(img)
            loss = fluid.layers.cross_entropy(input=out, label=label)
            avg_loss = fluid.layers.mean(x=loss)
            optimizer.minimize(avg_loss)

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
299
            static_grad_name_list = []
300 301 302
            for param in fluid.default_startup_program().global_block(
            ).all_parameters():
                static_param_name_list.append(param.name)
M
minqiyang 已提交
303 304 305 306 307
            for param in fluid.default_main_program().global_block(
            ).all_parameters():
                if not param.stop_gradient:
                    static_grad_name_list.append(param.name +
                                                 core.grad_var_suffix())
308 309 310 311 312 313 314 315

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
316
                if batch_id >= batch_num:
317 318
                    break

M
minqiyang 已提交
319
                static_x_data = np.array(
320 321 322 323
                    [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    [batch_size, 1])

M
minqiyang 已提交
324
                fetch_list = [avg_loss.name]
325
                fetch_list.extend(static_param_name_list)
M
minqiyang 已提交
326
                fetch_list.extend(static_grad_name_list)
327
                out = exe.run(fluid.default_main_program(),
M
minqiyang 已提交
328
                              feed={"pixel": static_x_data,
329 330 331 332
                                    "label": y_data},
                              fetch_list=fetch_list)

                static_param_value = {}
M
minqiyang 已提交
333
                static_grad_value = {}
334
                static_out = out[0]
M
minqiyang 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348
                param_start_pos = 1
                grad_start_pos = len(static_param_name_list) + param_start_pos
                for i in range(param_start_pos,
                               len(static_param_name_list) + param_start_pos):
                    static_param_value[static_param_name_list[
                        i - param_start_pos]] = out[i]
                for i in range(grad_start_pos,
                               len(static_grad_name_list) + grad_start_pos):
                    static_grad_value[static_grad_name_list[
                        i - grad_start_pos]] = out[i]

        self.assertTrue(np.allclose(static_out, dy_out))

        self.assertEqual(len(dy_param_init_value), len(static_param_init_value))
X
Xin Pan 已提交
349

M
minqiyang 已提交
350 351
        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))
352 353
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
354

M
minqiyang 已提交
355
        self.assertEqual(len(dy_grad_value), len(static_grad_value))
M
minqiyang 已提交
356
        for key, value in six.iteritems(static_grad_value):
M
minqiyang 已提交
357
            self.assertTrue(np.allclose(value, dy_grad_value[key]))
358 359
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
360

M
minqiyang 已提交
361
        self.assertEqual(len(dy_param_value), len(static_param_value))
M
minqiyang 已提交
362
        for key, value in six.iteritems(static_param_value):
363 364 365
            self.assertTrue(np.allclose(value, dy_param_value[key]))
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
M
minqiyang 已提交
366 367 368 369


if __name__ == '__main__':
    unittest.main()