composite_rules.py 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This file contains composite rules of nonbasic operations. There are some notes:
# 1. When define composite rule of some op, you can only use primitive ops defined in primitives.py.
# 2. The name and args of target op must be corresponding with standard description of op in
#    ops.yaml or legacy_ops.yaml.

Z
zqw_1997 已提交
20 21
import functools
import operator
22

23 24
from paddle.fluid import core

25 26 27 28 29 30 31 32 33 34 35 36
from .primitives import *  # noqa: F403
from .primreg import REGISTER_COMPOSITE, lookup_composite


def _composite(op, *args):
    _lowerrule = lookup_composite(op.type)
    return _lowerrule(op, *args)


@REGISTER_COMPOSITE('softmax')
def softmax_composite(x, axis):
    """define composite rule of op softmax"""
37 38 39 40 41 42 43
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    # Softmax need fp32 compute since it has sum op in
    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
C
cyber-pioneer 已提交
44 45
    if not x.shape:
        # do not return 1, to ensure gradients
46
        res = exp(x - x)
47 48
        if is_amp:
            res = cast(res, "float16")
C
cyber-pioneer 已提交
49
        return res
50 51 52 53
    max_temp = max(x, axis, keepdim=True)
    max_temp.stop_gradient = True
    molecular = exp(x - max_temp)
    denominator = sum(molecular, axis=axis, keepdim=True)
54
    res = divide(molecular, denominator)
55 56
    if is_amp:
        res = cast(res, "float16")
57
    return res
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73


@REGISTER_COMPOSITE('batch_norm')
def composite_batchnorm(
    x,
    run_mean,
    run_var,
    scale,
    bias,
    is_test,
    momentum,
    epsilon,
    data_layout,
    use_global_stats,
    trainable_statistics,
):
74 75 76 77 78
    """
    define composite rule of op batch_norm
    As the same with op kernel, the position of savedvariance indeed return inverse std.
    """

J
Jiabin Yang 已提交
79 80 81 82 83 84
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

    feature_axis = (
        1 if data_layout in ('NC', 'NCL', 'NCHW', 'NCHWD') else len(x.shape) - 1
    )
    if use_global_stats is None:
        use_global_stats = is_test
        trainable_statistics = False
    else:
        trainable_statistics = not use_global_stats

    use_run_stat = (is_test and (not trainable_statistics)) or use_global_stats
    reduce_axes = tuple(i for i in range(len(x.shape)) if i != feature_axis)
    stats_shape = tuple(
        1 if i in reduce_axes else s for i, s in enumerate(x.shape)
    )

101
    half = -0.5
J
Jiabin Yang 已提交
102

103 104 105
    if not use_run_stat:
        batch_mean = mean(x, reduce_axes)
        temp = mean(x * x, reduce_axes)
106
        batch_var = temp - batch_mean * batch_mean
107 108 109 110 111 112 113 114 115 116
        inv_std = pow((batch_var + epsilon), half)
        if data_layout == "NHWC":
            x_hat = (x - batch_mean) * inv_std
        else:
            x_hat = (x - reshape(batch_mean, stats_shape)) * reshape(
                inv_std, stats_shape
            )

        run_mean = momentum * run_mean + (1 - momentum) * batch_mean
        run_var = momentum * run_var + (1 - momentum) * batch_var
117
    else:
118 119 120 121 122 123 124 125 126 127 128 129 130
        batch_mean = zeros(run_mean.shape, run_mean.dtype)
        batch_var = zeros(run_var.shape, run_var.dtype)
        inv_std = pow((batch_var + epsilon), half)
        if data_layout == "NHWC":
            x_hat = (x - run_mean) * pow((run_var + epsilon), half)
        else:
            x_hat = (x - reshape(run_mean, stats_shape)) * pow(
                (reshape(run_var, stats_shape) + epsilon), half
            )
    if data_layout == "NHWC":
        y = scale * x_hat + bias
    else:
        y = reshape(scale, stats_shape) * x_hat + reshape(bias, stats_shape)
J
Jiabin Yang 已提交
131 132
    if is_amp:
        y = cast(y, "float16")
133 134

    # add op assign to detach tensor in void unsafe change outside the rule.
135 136
    batch_mean_ = assign(batch_mean)
    inv_std_ = assign(inv_std)
C
cyber-pioneer 已提交
137 138
    run_mean_ = assign(run_mean)
    run_var_ = assign(run_var)
139

I
iLeGend 已提交
140
    # reserve_space is not needed in composite rule, but still ruturn None to keep same as phi op definition.
C
cyber-pioneer 已提交
141
    reserve_space = None
142

143
    return y, run_mean_, run_var_, batch_mean_, inv_std_, reserve_space
G
GGBond8488 已提交
144 145


X
xiaoguoguo626807 已提交
146 147 148 149 150 151 152
@REGISTER_COMPOSITE('layer_norm')
def layernorm_composite(x, scale, bias, epsilon, begin_norm_axis):
    """
    define composite rule of op layer_norm
    out = (x - mean(x)) / sqrt(var + epsilon))
    var = mean((x-mean(x))^2)
    """
153 154 155 156 157 158
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
X
xiaoguoguo626807 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

    axis = tuple(range(begin_norm_axis, len(x.shape)))
    mean_ = mean(x, axis=axis, keepdim=True)
    difference = x - mean_
    var_tmp1 = difference * difference
    variance = mean(var_tmp1, axis=axis, keepdim=True)
    var_tmp3 = variance + epsilon
    sqrt_var = sqrt(var_tmp3)
    out = difference / sqrt_var

    if scale is not None:
        scale = reshape(scale, x.shape[begin_norm_axis:])
        out = out * scale
    if bias is not None:
        bias = reshape(bias, x.shape[begin_norm_axis:])
        out = out + bias

    mean_ = reshape(mean_, [-1])
    variance = reshape(variance, [-1])
178 179
    if is_amp:
        out = cast(out, "float16")
180

X
xiaoguoguo626807 已提交
181 182 183
    return out, mean_, variance


G
GGBond8488 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
@REGISTER_COMPOSITE('gelu')
def gelu_composite(x, approximate):
    """define composite rule of op gelu"""
    M_SQRT1_2 = (
        0.70710678118654752440  # /* 1/sqrt(2) */ copy from gelu-kernel.cc
    )
    M_2_SQRTPI = 1.12837916709551257390  # /* 2/sqrt(pi) */
    one = ones(x.shape, x.dtype)
    half = full(x.shape, 0.5, x.dtype)
    if approximate:
        # gelu(x) = 0.5 * x * (1 + tanh(sqrt(2 / \pi) * (x + 0.044715 * x^{3})))
        kAlpha = full(x.shape, M_2_SQRTPI * M_SQRT1_2, x.dtype)
        GELU_CONSTANT = full(x.shape, 0.044715, x.dtype)
        tanh_out = tanh(kAlpha * (x + GELU_CONSTANT * x * x * x))
        out = x * half * (one + tanh_out)
        return out

    else:
        # gelu(x) = 0.5 * x *  (1 + erf(x / sqrt(2)))
        cdf = half * (one + erf(x * full(x.shape, M_SQRT1_2, x.dtype)))
        out = x * cdf
        return out
Z
zqw_1997 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222


@REGISTER_COMPOSITE('reduce_mean')
def mean_composite(x, axis, keepdim):
    """define composite rule of op mean"""
    axes = axis or list(range(0, len(x.shape)))
    axes = [axes] if isinstance(axes, int) else axes
    sum_x = sum(x, axis=axes, keepdim=keepdim)
    value_to_fill = functools.reduce(
        operator.mul, [x.shape[axis] for axis in axes]
    )
    norm = fill_constant(
        shape=sum_x.shape,
        value=value_to_fill,
        dtype=sum_x.dtype,
    )
    return divide(sum_x, norm)
223 224


225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
@REGISTER_COMPOSITE('expand_v2')
def expand_v2_composite(x, shape):
    """
    define composite rule of op expnad_v2, expand_v2->expand
    repeat_times = shape / x.shape
    out = tile(x, repeat_times = repeat_times)
    """
    shape_in = x.shape
    dim_out = len(shape)
    dim_in = len(shape_in)
    assert dim_in <= dim_out and dim_out >= 0
    repeat_times = []
    for i in range(dim_out):
        offset = dim_out - i
        dim = dim_in - offset
        size_in = shape_in[dim] if dim >= 0 else 1
        size_out = shape[i]
        if size_out == -1:
            assert dim >= 0
            repeat = 1
        else:
            assert size_out % size_in == 0
            repeat = int(size_out / size_in)
        repeat_times.append(repeat)
    if dim_in < dim_out:
        shape_in_expand = []
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        for i in range(dim_out - dim_in):
            shape_in_expand.append(1)
        shape_in_expand.extend(shape_in)
        x_reshape = reshape(x, shape_in_expand)
        return tile(x_reshape, repeat_times=repeat_times)
    return tile(x, repeat_times=repeat_times)


@REGISTER_COMPOSITE('expand_as_v2')
def expand_as_v2_composite(x, y, target_shape):
    """
    define composite rule of op expnad_as_v2, expand_as_v2->expand_as
    repeat_times = target_shape / x.shape
    out = tile(x, repeat_times = repeat_times)
    """
    shape_in = x.shape
    if y is not None:
        target_shape = y.shape
    assert target_shape is not None
    dim_out = len(target_shape)
    dim_in = len(shape_in)
    assert dim_in <= dim_out and dim_out >= 0
    repeat_times = []
    for i in range(dim_out):
        offset = dim_out - i
        dim = dim_in - offset
        size_in = shape_in[dim] if dim >= 0 else 1
        size_out = target_shape[i]
        if size_out == -1:
            assert dim >= 0
            repeat = 1
        else:
            assert size_out % size_in == 0
            repeat = int(size_out / size_in)
        repeat_times.append(repeat)
    if dim_in < dim_out:
        shape_in_expand = []
288 289 290 291 292 293 294 295
        for i in range(dim_out - dim_in):
            shape_in_expand.append(1)
        shape_in_expand.extend(shape_in)
        x_reshape = reshape(x, shape_in_expand)
        return tile(x_reshape, repeat_times=repeat_times)
    return tile(x, repeat_times=repeat_times)


C
ccrrong 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309
@REGISTER_COMPOSITE('stack')
def stack_composite(x, axis):
    """
    define composite rule of op stack
    unsqueeze each dimension of the input (use reshape), and then concat
    """
    x_shape = x[0].shape
    if axis < 0:
        axis += len(x_shape) + 1
    out_shape = x_shape[:axis] + (1,) + x_shape[axis:]
    out = concat([reshape(item, out_shape) for item in x], axis)
    return out


310 311 312 313
@REGISTER_COMPOSITE('flatten_contiguous_range')
def flatten_contiguous_range_composite(x, start_axis, stop_axis):
    """
    define composite rule of op flatten, flatten_contiguous_range -> flatten.
314 315

    xshape is the dim with 0 added to the front of x, keep the shape information of x to calculate the grad.
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    CINN doesn't need xshape for backward pass, return none instead of xshape.
    shape_out is the parameter of reshape, get from start_axis and stop_axis.
    out = reshape(x, shape=shape_out), xshape
    """
    shape_in = x.shape
    start_dim = start_axis if len(shape_in) != 0 else 0
    end_dim = stop_axis if len(shape_in) != 0 else 0
    assert start_dim <= end_dim
    if len(shape_in) == 0 or start_dim == end_dim:
        return reshape(x, shape=shape_in), None
    slice_numel = 1
    for i in range(start_dim, end_dim + 1):
        slice_numel *= shape_in[i]
    shape_out = []
    for i in range(start_dim):
        shape_out.append(shape_in[i])
    shape_out.append(slice_numel)
    for i in range(end_dim + 1, len(shape_in)):
        shape_out.append(shape_in[i])
    return reshape(x, shape=shape_out), None


338 339 340 341 342 343 344 345 346 347 348 349 350
@REGISTER_COMPOSITE('dropout')
def dropout_composite(x, seed_tensor, p, is_test, mode, seed, fix_seed):
    """define composite rule of op dropout.
    upscale_in_train:
        train: out = input * mask / ( 1.0 - p )
        inference: out = input
    downscale_in_infer
        train: out = input * mask
        inference: out = input * (1.0 - p)
    """
    fix_seed = True if fix_seed is None else fix_seed
    seed = seed if fix_seed else 0
    upscale_in_train = mode == "upscale_in_train"
351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    mask = bernoulli(shape=x.shape, dtype=x.dtype, p=p, seed=seed)

    if upscale_in_train:
        if not is_test:
            # Process p=1.0 for avoid devide zero error (x*mask/(1.0-p))
            if p == 1.0:
                return 0.0 * x, zeros(x.shape, core.VarDesc.VarType.UINT8)
            else:
                return x * mask / (1.0 - p), cast(
                    mask, core.VarDesc.VarType.UINT8
                )
        else:
            return assign(x), cast(mask, core.VarDesc.VarType.UINT8)
    else:
        if not is_test:
            return x * mask, cast(mask, core.VarDesc.VarType.UINT8)
        else:
            return x * (1.0 - p), cast(mask, core.VarDesc.VarType.UINT8)


def bernoulli(shape, dtype, p, seed=0):
373 374 375 376
    from paddle.fluid.data_feeder import convert_dtype

    # TODO(jiabin) Fix uniform doesn't support float16 error in CINN
    new_dtype = "float32" if convert_dtype(dtype) == "float16" else dtype
377 378
    return cast(
        greater_equal(
379 380
            uniform(shape, new_dtype, min=0.0, max=1.0, seed=seed),
            fill_constant(shape, new_dtype, p),
381 382 383
        ),
        dtype,
    )
Z
zxcd 已提交
384 385


R
Roc 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
@REGISTER_COMPOSITE('hard_swish')
def hard_swish_composite(x):
    """define composite rule of op hard_swish.
    offset=3, threshold=6, scale=6
    out = minimum(
        maxmum(x + offset, 0), threshold
    ) * x / scale
    """
    offset = 3.0
    threshold = 6.0
    scale = 6.0
    res = (
        minimum(
            maximum(
                x + full(x.shape, offset, dtype=x.dtype),
                full(x.shape, 0.0, dtype=x.dtype),
            ),
            full(x.shape, threshold, dtype=x.dtype),
        )
        * x
        / full(x.shape, scale, dtype=x.dtype)
    )
    return res


R
Roc 已提交
411 412 413 414 415 416 417 418 419
@REGISTER_COMPOSITE('index_select')
def index_select_composite(x, index, axis):
    """define composite rule of op index_select."""
    if axis < 0:
        axis = len(x.shape) + axis
    res = gather(x, index, axis=axis)
    return res


Z
zxcd 已提交
420 421 422 423 424 425 426 427 428 429 430
@REGISTER_COMPOSITE('sigmoid')
def sigmoid_composite(x):
    """
    define composite rule of op sigmoid
    res = 1 / (1 + exp(-x))
    """
    sum_temp = 1 + exp(-x)
    res = 1 / sum_temp
    return res


Z
zxcd 已提交
431 432 433 434 435 436 437 438 439
@REGISTER_COMPOSITE('silu')
def silu_composite(x):
    """
    define composite rule of op silu
    res = x / (1 + exp(-x))
    """
    sum_temp = 1 + exp(-x)
    res = x / sum_temp
    return res
440 441


442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
@REGISTER_COMPOSITE('meshgrid')
def meshgrid_composite(inputs):
    """
    define composite rule of op meshgrid
    If the input has N tensors of size S_0, ... S_n-1, then the output will also have N tensors, where
    each tensor is of shape (S_0, ..., S_n-1).
    E.g. a1 is Tensor [1,2,3]
         b1 is Tensor [4,5]
         r1, r2 = paddle.meshgrid([a1, b1])
         r1 is Tensor [[1,1], [2,2], [3,3]]
         r2 is Tensor [[4,5], [4,5], [4,5]]
    """
    size = len(inputs)
    shape = [1] * size
    for i in range(size):
        dim = inputs[i].dim()
        assert dim == 0 or dim == 1
        if dim == 1:
            shape[i] = inputs[i].shape[0]
    outputs = []
    for i in range(size):
        view_shape = [1] * size
        view_shape[i] = shape[i]
        outputs.append(inputs[i].reshape(view_shape).broadcast_to(shape))
    return outputs


469 470 471 472 473 474 475
@REGISTER_COMPOSITE('fill_any_like')
def fill_any_like(x, fill_value, dtype, place=None):
    """define composite rule of op full_like."""
    """op name: full_like  op type name: fill_any_like."""
    """arg place is not used, add it here to keep same as python api."""
    val = full(x.shape, fill_value, dtype)
    return val
K
Kang Zhao 已提交
476 477


478 479 480 481 482 483 484 485 486 487 488 489 490 491
@REGISTER_COMPOSITE('squeeze2')
def squeeze2_composite(x, axis):
    """define composite rule of squeeze"""
    """
    canonicalize dim within range 0 to rank and
    determine new shape after squeeze op
    if axis not specified, remove all dims equal to 1
    otherwise, remove dims equal to 1 in axis
    axis can only be list, not int
    """
    rank = len(x.shape)
    if len(axis) == 0:
        dims = set(range(rank))
    else:
492
        dims = {ax % rank for ax in axis}
493 494 495 496 497 498 499 500
    new_shape = []
    for d, s in enumerate(x.shape):
        if not (s == 1 and (d in dims)):
            new_shape.append(s)
    out = reshape(x, new_shape)
    return [out, None]


M
mhy-666 已提交
501 502 503 504 505 506 507 508 509 510 511
@REGISTER_COMPOSITE('sqrt')
def sqrt_composite(x):
    """
    define composite rule of op sqrt
    res = pow(x, 0.5)
    """
    y = full(x.shape, 0.5, x.dtype)
    res = pow(x, y)
    return res


512 513 514 515 516 517 518 519 520 521 522 523
@REGISTER_COMPOSITE('pow')
def pow_composite(x, y):
    """
    define composite rule of op pow
    res = x^y
    """
    if isinstance(y, (int, float)):
        y = full([1], y, x.dtype)
    res = pow(x, y)
    return res


K
Kang Zhao 已提交
524 525 526 527 528
@REGISTER_COMPOSITE('relu')
def relu_composite(x):
    """define composite rule of op relu."""
    # relu(x) = max(x, 0)
    return maximum(x, zeros_like(x))
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548


@REGISTER_COMPOSITE('unsqueeze2')
def unsqueeze_composite(x, axis):
    """define composite rule of op unsqueeze"""
    """using reshape to implement unsqueeze op"""
    x_shape = list(x.shape)
    axis_list = list(axis)
    for i in axis_list:
        if i < 0:
            i += len(x_shape) + 1
        x_shape = (
            x_shape[:i]
            + [
                1,
            ]
            + x_shape[i:]
        )
    out = reshape(x, x_shape)
    return [out, None]
549 550 551 552 553 554 555 556


@REGISTER_COMPOSITE('rsqrt')
def rsqrt_composite(x):
    """define composite rule of op rsqrt."""
    # rsqrt(x) = x^(-0.5)
    y = full(x.shape, -0.5, x.dtype)
    return pow(x, y)