FactorizationMachineLayer.cpp 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "FactorizationMachineLayer.h"
#include <algorithm>
#include <vector>
#include "paddle/math/SparseMatrix.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

namespace paddle {

REGISTER_LAYER(factorization_machine, FactorizationMachineLayer);

bool FactorizationMachineLayer::init(const LayerMap& layerMap,
                                     const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  factorSize_ = config_.factor_size();

  /* initialize the latentVectors_ */
  CHECK_EQ(inputLayers_.size(), 1UL);
35 36 37 38
  size_t inputSize = inputLayers_[0]->getSize();
  CHECK_EQ(parameters_[0]->getSize(), inputSize * factorSize_);
  latentVectors_ = std::unique_ptr<Weight>(
      new Weight(inputSize, factorSize_, parameters_[0]));
39 40 41 42 43 44 45

  return true;
}

void FactorizationMachineLayer::forward(PassType passType) {
  Layer::forward(passType);

W
wangmeng28 已提交
46
  const MatrixPtr& inputV = getInputValue(0);
47

W
wangmeng28 已提交
48
  size_t batchSize = inputV->getHeight();
49 50 51
  size_t outputSize = getSize();
  size_t inputSize = inputLayers_[0]->getSize();
  reserveOutput(batchSize, outputSize);
52 53 54

  MatrixPtr outV = getOutputValue();

55 56 57 58
  Matrix::resizeOrCreate(
      latentVectorsSquare_, inputSize, factorSize_, false, useGpu_);
  Matrix::resizeOrCreate(
      inputMulFactor_, batchSize, factorSize_, false, useGpu_);
W
wangmeng28 已提交
59 60
  Matrix::resizeOrCreate(tmpOut_, batchSize, factorSize_, false, useGpu_);

61 62 63
  REGISTER_TIMER_INFO("InputMulFactorTimer", getName().c_str());
  inputMulFactor_->mul(*inputV, *latentVectors_->getW());
  inputMulFactor_->square2(*tmpOut_);
W
wangmeng28 已提交
64 65
  outV->sumRows(*tmpOut_, 0.5, 0);

66 67 68 69
  inputSquare_ = inputV->clone(0, 0, useGpu_);
  if (dynamic_cast<CpuSparseMatrix*>(inputSquare_.get())) {
    inputSquare_->copyFrom(*inputV);
    (dynamic_cast<CpuSparseMatrix*>(inputSquare_.get()))->square2();
70
  } else {
71
    inputV->square2(*inputSquare_);
72
  }
73 74
  latentVectors_->getW()->square2(*latentVectorsSquare_);
  tmpOut_->mul(*inputSquare_, *latentVectorsSquare_);
W
wangmeng28 已提交
75 76
  outV->sumRows(*tmpOut_, -0.5, 1.0);

77
  /* activation */ {
78
    REGISTER_TIMER_INFO("FmAtvTimer", getName().c_str());
79 80 81 82 83
    forwardActivation();
  }
}

void FactorizationMachineLayer::backward(const UpdateCallback& callback) {
84
  /* Do derivation */ { backwardActivation(); }
W
wangmeng28 已提交
85 86 87 88

  const MatrixPtr& inputV = getInputValue(0);
  const MatrixPtr& oGrad = getOutputGrad();

89 90 91 92 93 94 95
  Matrix::resizeOrCreate(
      tmpSum_, 1, latentVectors_->getW()->getHeight(), false, useGpu_);
  MatrixPtr tmpSumTrans = Matrix::create(tmpSum_->getRowBuf(0),
                                         latentVectors_->getW()->getHeight(),
                                         1,
                                         false,
                                         useGpu_);
W
wangmeng28 已提交
96 97 98

  /* Calculate the gradients of the latentVectors_ matrix */
  if (latentVectors_->getWGrad()) {
99
    MatrixPtr tmpInput = inputV->clone(0, 0, useGpu_);
100
    if (dynamic_cast<CpuSparseMatrix*>(inputV.get())) {
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
      CpuSparseMatrix* sparseInputV =
          dynamic_cast<CpuSparseMatrix*>(inputV.get());
      CpuSparseMatrix* sparseInputSquare =
          dynamic_cast<CpuSparseMatrix*>(inputSquare_.get());
      CpuSparseMatrix* sparseTmpInput =
          dynamic_cast<CpuSparseMatrix*>(tmpInput.get());
      sparseTmpInput->copyFrom(*sparseInputV);
      sparseTmpInput->rowScale(0, *sparseInputV, *oGrad);
      latentVectors_->getWGrad()->mul(
          *sparseTmpInput->getTranspose(), *inputMulFactor_, 1, 1);
      sparseTmpInput->rowScale(0, *sparseInputSquare, *oGrad);

      Matrix::resizeOrCreate(negOnes_, 1, inputV->getHeight(), false, useGpu_);
      negOnes_->zeroMem();
      negOnes_->add(-1);
      tmpSum_->mul(*negOnes_, *sparseTmpInput, 1, 0);
117
    } else {
118 119 120 121
      tmpInput->rowScale(0, *inputV, *oGrad);
      latentVectors_->getWGrad()->mul(
          *tmpInput->getTranspose(), *inputMulFactor_, 1, 1);
      tmpInput->rowScale(0, *inputSquare_, *oGrad);
122

123
      tmpSum_->sumCols(*tmpInput, -1, 0);
124
    }
W
wangmeng28 已提交
125 126

    latentVectors_->getWGrad()->addRowScale(
127
        0, *latentVectors_->getW(), *tmpSumTrans);
W
wangmeng28 已提交
128 129 130 131 132 133 134 135

    /* Increasing the number of gradient */
    latentVectors_->getParameterPtr()->incUpdate(callback);
  }

  /* Calculate the input layers gradient */
  MatrixPtr inGrad = getInputGrad(0);
  if (inGrad != NULL) {
136 137 138 139
    inGrad->mul(
        *inputMulFactor_, *latentVectors_->getW()->getTranspose(), 1, 1);
    tmpSumTrans->sumRows(*latentVectorsSquare_, -1, 0);
    inGrad->addColScale(0, *inputV, *tmpSum_);
W
wangmeng28 已提交
140 141
    inGrad->rowScale(0, *inGrad, *oGrad);
  }
142 143 144
}

}  // namespace paddle