Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
947b6a77
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
947b6a77
编写于
10月 17, 2017
作者:
W
wangmeng28
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Implement factorization machine layer
上级
f504c8a8
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
73 addition
and
6 deletion
+73
-6
paddle/gserver/layers/FactorizationMachineLayer.cpp
paddle/gserver/layers/FactorizationMachineLayer.cpp
+58
-4
paddle/gserver/layers/FactorizationMachineLayer.h
paddle/gserver/layers/FactorizationMachineLayer.h
+12
-0
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+3
-2
未找到文件。
paddle/gserver/layers/FactorizationMachineLayer.cpp
浏览文件 @
947b6a77
...
...
@@ -33,7 +33,10 @@ bool FactorizationMachineLayer::init(const LayerMap& layerMap,
/* initialize the latentVectors_ */
CHECK_EQ
(
inputLayers_
.
size
(),
1UL
);
size_t
height
=
inputLayers_
[
0
]
->
getSize
();
latentVectors_
.
reset
(
new
Weight
(
height
,
factorSize_
,
parameters_
[
0
]));
latentVectors_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
height
,
factorSize_
,
parameters_
[
0
]));
v2_
=
latentVectors_
->
getW
()
->
clone
(
0
,
0
,
useGpu_
);
return
true
;
}
...
...
@@ -41,14 +44,28 @@ bool FactorizationMachineLayer::init(const LayerMap& layerMap,
void
FactorizationMachineLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
auto
input
=
getInput
(
0
);
const
MatrixPtr
&
inputV
=
getInputValue
(
0
);
int
batchSize
=
input
.
getBatchSize
();
in
t
size
=
getSize
();
size_t
batchSize
=
inputV
->
getHeight
();
size_
t
size
=
getSize
();
reserveOutput
(
batchSize
,
size
);
MatrixPtr
outV
=
getOutputValue
();
Matrix
::
resizeOrCreate
(
tmpMul_
,
batchSize
,
factorSize_
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
tmpOut_
,
batchSize
,
factorSize_
,
false
,
useGpu_
);
REGISTER_TIMER_INFO
(
"FwMulTimer"
,
getName
().
c_str
());
tmpMul_
->
mul
(
*
inputV
,
*
latentVectors_
->
getW
());
tmpOut_
->
pow2
(
*
tmpMul_
,
2
);
outV
->
sumRows
(
*
tmpOut_
,
0.5
,
0
);
x2_
=
inputV
->
clone
(
0
,
0
,
useGpu_
);
x2_
->
pow2
(
*
inputV
,
2
);
v2_
->
pow2
(
*
latentVectors_
->
getW
(),
2
);
tmpOut_
->
mul
(
*
x2_
,
*
v2_
);
outV
->
sumRows
(
*
tmpOut_
,
-
0.5
,
1.0
);
/* activation */
{
REGISTER_TIMER_INFO
(
"FwAtvTimer"
,
getName
().
c_str
());
forwardActivation
();
...
...
@@ -60,6 +77,43 @@ void FactorizationMachineLayer::backward(const UpdateCallback& callback) {
REGISTER_TIMER_INFO
(
"BpAvtTimer"
,
getName
().
c_str
());
backwardActivation
();
}
const
MatrixPtr
&
inputV
=
getInputValue
(
0
);
const
MatrixPtr
&
oGrad
=
getOutputGrad
();
MatrixPtr
tmpSum
=
Matrix
::
create
(
1
,
latentVectors_
->
getW
()
->
getHeight
(),
false
,
useGpu_
);
MatrixPtr
tmpSum_T
=
Matrix
::
create
(
tmpSum
->
getRowBuf
(
0
),
latentVectors_
->
getW
()
->
getHeight
(),
1
,
false
,
useGpu_
);
/* Calculate the gradients of the latentVectors_ matrix */
if
(
latentVectors_
->
getWGrad
())
{
MatrixPtr
tmpIn
=
inputV
->
clone
(
0
,
0
,
useGpu_
);
tmpIn
->
rowScale
(
0
,
*
inputV
,
*
oGrad
);
latentVectors_
->
getWGrad
()
->
mul
(
*
tmpIn
->
getTranspose
(),
*
tmpMul_
,
1
,
1
);
tmpIn
->
rowScale
(
0
,
*
x2_
,
*
oGrad
);
tmpSum
->
sumCols
(
*
tmpIn
,
-
1
,
0
);
latentVectors_
->
getWGrad
()
->
addRowScale
(
0
,
*
latentVectors_
->
getW
(),
*
tmpSum_T
);
/* Increasing the number of gradient */
latentVectors_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
/* Calculate the input layers gradient */
MatrixPtr
inGrad
=
getInputGrad
(
0
);
if
(
inGrad
!=
NULL
)
{
MatrixPtr
latentVectors_T
=
latentVectors_
->
getW
()
->
getTranspose
();
inGrad
->
mul
(
*
tmpMul_
,
*
latentVectors_T
,
1
,
1
);
tmpSum_T
->
sumRows
(
*
v2_
,
-
1
,
0
);
inGrad
->
addColScale
(
0
,
*
inputV
,
*
tmpSum
);
inGrad
->
rowScale
(
0
,
*
inGrad
,
*
oGrad
);
}
}
}
// namespace paddle
paddle/gserver/layers/FactorizationMachineLayer.h
浏览文件 @
947b6a77
...
...
@@ -40,10 +40,22 @@ namespace paddle {
class
FactorizationMachineLayer
:
public
Layer
{
protected:
/// The latent vectors, shape: (size, factorSize_)
/// Each row of the latentVectors_ matrix is the latent vector
/// corresponding to one input feature dimension
std
::
unique_ptr
<
Weight
>
latentVectors_
;
/// The hyperparameter that defines the dimensionality of the factorization
size_t
factorSize_
;
private:
/// The result of input matrix * letent vector matrix that will be used in
/// both forward and backward step
MatrixPtr
tmpMul_
;
MatrixPtr
tmpOut_
;
/// Store the square values of the letent vectors matrix
MatrixPtr
v2_
;
/// Store the square values of input matrix
MatrixPtr
x2_
;
public:
explicit
FactorizationMachineLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
947b6a77
...
...
@@ -2363,8 +2363,9 @@ void testFactorizationMachineLayer(InputType type, bool useGpu) {
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"factorization_machine"
);
config
.
layerConfig
.
set_factor_size
(
FACTOR_SIZE
);
config
.
biasSize
=
1
;
config
.
inputDefs
.
push_back
({
type
,
"layer_0"
,
8192
,
0
});
config
.
layerConfig
.
set_size
(
1
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
type
,
"layer_0"
,
1024
,
10240
});
config
.
layerConfig
.
add_inputs
();
testLayerGrad
(
config
,
"factorization_machine"
,
16
,
false
,
useGpu
,
false
);
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录