dist_text_classification.py 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
17 18 19
import string
import tarfile

20 21
from test_dist_base import TestDistRunnerBase, runtime_main

22 23 24
import paddle
import paddle.fluid as fluid

25 26 27 28 29 30 31 32 33 34
DTYPE = "float32"
VOCAB_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/imdb.vocab'
VOCAB_MD5 = '23c86a0533c0151b6f12fa52b106dcc2'
DATA_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/text_classification.tar.gz'
DATA_MD5 = '29ebfc94f11aea9362bbb7f5e9d86b8a'


# Load dictionary.
def load_vocab(filename):
    vocab = {}
T
tianshuo78520a 已提交
35 36 37
    with open(filename, 'r', encoding="utf-8") as f:
        for idx, line in enumerate(f):
            vocab[line.strip()] = idx
38 39 40 41 42 43 44 45 46 47
    return vocab


def get_worddict(dict_path):
    word_dict = load_vocab(dict_path)
    word_dict["<unk>"] = len(word_dict)
    dict_dim = len(word_dict)
    return word_dict, dict_dim


48 49 50 51 52 53 54 55 56
def conv_net(
    input,
    dict_dim,
    emb_dim=128,
    window_size=3,
    num_filters=128,
    fc0_dim=96,
    class_dim=2,
):
57 58 59 60
    emb = fluid.layers.embedding(
        input=input,
        size=[dict_dim, emb_dim],
        is_sparse=False,
61 62 63 64
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01)
        ),
    )
65 66 67 68 69 70 71

    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=num_filters,
        filter_size=window_size,
        act="tanh",
        pool_type="max",
72 73 74 75
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01)
        ),
    )
76 77 78 79

    fc_0 = fluid.layers.fc(
        input=[conv_3],
        size=fc0_dim,
80 81 82 83
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01)
        ),
    )
84 85 86 87 88

    prediction = fluid.layers.fc(
        input=[fc_0],
        size=class_dim,
        act="softmax",
89 90 91 92
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01)
        ),
    )
93 94 95 96 97

    return prediction


def inference_network(dict_dim):
98 99 100
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1
    )
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    out = conv_net(data, dict_dim)
    return out


def get_reader(word_dict, batch_size):
    # The training data set.
    train_reader = paddle.batch(train(word_dict), batch_size=batch_size)

    # The testing data set.
    test_reader = paddle.batch(test(word_dict), batch_size=batch_size)

    return train_reader, test_reader


def get_optimizer(learning_rate):
    optimizer = fluid.optimizer.SGD(learning_rate=learning_rate)
    return optimizer


class TestDistTextClassification2x2(TestDistRunnerBase):
    def get_model(self, batch_size=2):
122 123 124
        vocab = os.path.join(
            paddle.dataset.common.DATA_HOME, "text_classification", "imdb.vocab"
        )
125 126 127
        word_dict, dict_dim = get_worddict(vocab)

        # Input data
128 129 130
        data = fluid.layers.data(
            name="words", shape=[1], dtype="int64", lod_level=1
        )
131 132 133 134 135
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')

        # Train program
        predict = conv_net(data, dict_dim)
        cost = fluid.layers.cross_entropy(input=predict, label=label)
136
        avg_cost = paddle.mean(x=cost)
137
        acc = paddle.static.accuracy(input=predict, label=label)
138 139 140 141 142 143 144 145 146
        inference_program = fluid.default_main_program().clone()

        # Optimization
        opt = get_optimizer(learning_rate=0.001)
        opt.minimize(avg_cost)

        # Reader
        train_reader, test_reader = get_reader(word_dict, batch_size)

147 148 149 150 151 152 153 154
        return (
            inference_program,
            avg_cost,
            train_reader,
            test_reader,
            acc,
            predict,
        )
155 156 157 158 159 160 161 162


def tokenize(pattern):
    """
    Read files that match the given pattern.  Tokenize and yield each file.
    """

    with tarfile.open(
163 164 165 166
        paddle.dataset.common.download(
            DATA_URL, 'text_classification', DATA_MD5
        )
    ) as tarf:
167 168 169 170 171
        # Note that we should use tarfile.next(), which does
        # sequential access of member files, other than
        # tarfile.extractfile, which does random access and might
        # destroy hard disks.
        tf = tarf.next()
172
        while tf is not None:
173 174
            if bool(pattern.match(tf.name)):
                # newline and punctuations removal and ad-hoc tokenization.
175
                yield tarf.extractfile(tf).read().rstrip(b'\n\r').translate(
176 177
                    None, string.punctuation.encode('latin-1')
                ).lower().split()
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
            tf = tarf.next()


def reader_creator(pos_pattern, neg_pattern, word_idx):
    UNK = word_idx['<unk>']
    INS = []

    def load(pattern, out, label):
        for doc in tokenize(pattern):
            out.append(([word_idx.get(w, UNK) for w in doc], label))

    load(pos_pattern, INS, 0)
    load(neg_pattern, INS, 1)

    def reader():
        for doc, label in INS:
            yield doc, label

    return reader


def train(word_idx):
    """
    IMDB training set creator.

    It returns a reader creator, each sample in the reader is an zero-based ID
    sequence and label in [0, 1].

    :param word_idx: word dictionary
    :type word_idx: dict
    :return: Training reader creator
    :rtype: callable
    """
211 212 213 214 215
    return reader_creator(
        re.compile(r"train/pos/.*\.txt$"),
        re.compile(r"train/neg/.*\.txt$"),
        word_idx,
    )
216 217 218 219 220 221 222 223 224 225 226 227 228 229


def test(word_idx):
    """
    IMDB test set creator.

    It returns a reader creator, each sample in the reader is an zero-based ID
    sequence and label in [0, 1].

    :param word_idx: word dictionary
    :type word_idx: dict
    :return: Test reader creator
    :rtype: callable
    """
230 231 232 233 234
    return reader_creator(
        re.compile(r"test/pos/.*\.txt$"),
        re.compile(r"test/neg/.*\.txt$"),
        word_idx,
    )
235 236 237 238 239 240


if __name__ == "__main__":
    paddle.dataset.common.download(VOCAB_URL, 'text_classification', VOCAB_MD5)
    paddle.dataset.common.download(DATA_URL, 'text_classification', DATA_MD5)
    runtime_main(TestDistTextClassification2x2)