dist_text_classification.py 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
import os
import tarfile
import string
import re
from test_dist_base import TestDistRunnerBase, runtime_main

DTYPE = "float32"
VOCAB_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/imdb.vocab'
VOCAB_MD5 = '23c86a0533c0151b6f12fa52b106dcc2'
DATA_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/text_classification.tar.gz'
DATA_MD5 = '29ebfc94f11aea9362bbb7f5e9d86b8a'


# Load dictionary.
def load_vocab(filename):
    vocab = {}
T
tianshuo78520a 已提交
33 34 35
    with open(filename, 'r', encoding="utf-8") as f:
        for idx, line in enumerate(f):
            vocab[line.strip()] = idx
36 37 38 39 40 41 42 43 44 45
    return vocab


def get_worddict(dict_path):
    word_dict = load_vocab(dict_path)
    word_dict["<unk>"] = len(word_dict)
    dict_dim = len(word_dict)
    return word_dict, dict_dim


46 47 48 49 50 51 52 53 54
def conv_net(
    input,
    dict_dim,
    emb_dim=128,
    window_size=3,
    num_filters=128,
    fc0_dim=96,
    class_dim=2,
):
55 56 57 58
    emb = fluid.layers.embedding(
        input=input,
        size=[dict_dim, emb_dim],
        is_sparse=False,
59 60 61 62
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01)
        ),
    )
63 64 65 66 67 68 69

    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=num_filters,
        filter_size=window_size,
        act="tanh",
        pool_type="max",
70 71 72 73
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01)
        ),
    )
74 75 76 77

    fc_0 = fluid.layers.fc(
        input=[conv_3],
        size=fc0_dim,
78 79 80 81
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01)
        ),
    )
82 83 84 85 86

    prediction = fluid.layers.fc(
        input=[fc_0],
        size=class_dim,
        act="softmax",
87 88 89 90
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01)
        ),
    )
91 92 93 94 95

    return prediction


def inference_network(dict_dim):
96 97 98
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1
    )
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    out = conv_net(data, dict_dim)
    return out


def get_reader(word_dict, batch_size):
    # The training data set.
    train_reader = paddle.batch(train(word_dict), batch_size=batch_size)

    # The testing data set.
    test_reader = paddle.batch(test(word_dict), batch_size=batch_size)

    return train_reader, test_reader


def get_optimizer(learning_rate):
    optimizer = fluid.optimizer.SGD(learning_rate=learning_rate)
    return optimizer


class TestDistTextClassification2x2(TestDistRunnerBase):
    def get_model(self, batch_size=2):
120 121 122
        vocab = os.path.join(
            paddle.dataset.common.DATA_HOME, "text_classification", "imdb.vocab"
        )
123 124 125
        word_dict, dict_dim = get_worddict(vocab)

        # Input data
126 127 128
        data = fluid.layers.data(
            name="words", shape=[1], dtype="int64", lod_level=1
        )
129 130 131 132 133
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')

        # Train program
        predict = conv_net(data, dict_dim)
        cost = fluid.layers.cross_entropy(input=predict, label=label)
134
        avg_cost = paddle.mean(x=cost)
135 136 137 138 139 140 141 142 143 144
        acc = fluid.layers.accuracy(input=predict, label=label)
        inference_program = fluid.default_main_program().clone()

        # Optimization
        opt = get_optimizer(learning_rate=0.001)
        opt.minimize(avg_cost)

        # Reader
        train_reader, test_reader = get_reader(word_dict, batch_size)

145 146 147 148 149 150 151 152
        return (
            inference_program,
            avg_cost,
            train_reader,
            test_reader,
            acc,
            predict,
        )
153 154 155 156 157 158 159 160


def tokenize(pattern):
    """
    Read files that match the given pattern.  Tokenize and yield each file.
    """

    with tarfile.open(
161 162 163 164
        paddle.dataset.common.download(
            DATA_URL, 'text_classification', DATA_MD5
        )
    ) as tarf:
165 166 167 168 169
        # Note that we should use tarfile.next(), which does
        # sequential access of member files, other than
        # tarfile.extractfile, which does random access and might
        # destroy hard disks.
        tf = tarf.next()
170
        while tf is not None:
171 172
            if bool(pattern.match(tf.name)):
                # newline and punctuations removal and ad-hoc tokenization.
173
                yield tarf.extractfile(tf).read().rstrip(b'\n\r').translate(
174 175
                    None, string.punctuation.encode('latin-1')
                ).lower().split()
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
            tf = tarf.next()


def reader_creator(pos_pattern, neg_pattern, word_idx):
    UNK = word_idx['<unk>']
    INS = []

    def load(pattern, out, label):
        for doc in tokenize(pattern):
            out.append(([word_idx.get(w, UNK) for w in doc], label))

    load(pos_pattern, INS, 0)
    load(neg_pattern, INS, 1)

    def reader():
        for doc, label in INS:
            yield doc, label

    return reader


def train(word_idx):
    """
    IMDB training set creator.

    It returns a reader creator, each sample in the reader is an zero-based ID
    sequence and label in [0, 1].

    :param word_idx: word dictionary
    :type word_idx: dict
    :return: Training reader creator
    :rtype: callable
    """
209 210 211 212 213
    return reader_creator(
        re.compile(r"train/pos/.*\.txt$"),
        re.compile(r"train/neg/.*\.txt$"),
        word_idx,
    )
214 215 216 217 218 219 220 221 222 223 224 225 226 227


def test(word_idx):
    """
    IMDB test set creator.

    It returns a reader creator, each sample in the reader is an zero-based ID
    sequence and label in [0, 1].

    :param word_idx: word dictionary
    :type word_idx: dict
    :return: Test reader creator
    :rtype: callable
    """
228 229 230 231 232
    return reader_creator(
        re.compile(r"test/pos/.*\.txt$"),
        re.compile(r"test/neg/.*\.txt$"),
        word_idx,
    )
233 234 235 236 237 238


if __name__ == "__main__":
    paddle.dataset.common.download(VOCAB_URL, 'text_classification', VOCAB_MD5)
    paddle.dataset.common.download(DATA_URL, 'text_classification', DATA_MD5)
    runtime_main(TestDistTextClassification2x2)