sum_op_mlu.cc 2.7 KB
Newer Older
J
joeqiao12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/sum_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class SumMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto out_var = ctx.OutputVar("Out");
    if (out_var->IsType<framework::LoDTensor>()) {
      // init
      auto *out = out_var->GetMutable<framework::LoDTensor>();
      auto ins = ctx.MultiInput<Tensor>("X");
      out->mutable_data<T>(ctx.GetPlace());
      auto place = ctx.GetPlace();
      int ins_size = static_cast<int>(ins.size());
      if (ins_size == 1) {
36
        framework::TensorCopy(*ins[0], place, out);
J
joeqiao12 已提交
37 38 39 40 41 42 43 44 45
        return;
      }

      // MLU shoul do sth
      std::vector<const void *> inputs;
      std::vector<MLUCnnlTensorDesc> input_descs;
      std::vector<cnnlTensorDescriptor_t> desc_vector;
      for (int i = 0; i < ins_size; i++) {
        input_descs.emplace_back(MLUCnnlTensorDesc(
46 47
            *ins[i], CNNL_LAYOUT_ARRAY,
            ToCnnlDataType(framework::TransToProtoVarType(ins[i]->dtype()))));
J
joeqiao12 已提交
48 49 50 51
        desc_vector.push_back(input_descs.back().get());
        inputs.push_back(GetBasePtr(ins[i]));
      }
      // init out tensors
52 53 54
      MLUCnnlTensorDesc output_desc(
          *out, CNNL_LAYOUT_ARRAY,
          ToCnnlDataType(framework::TransToProtoVarType(out->dtype())));
J
joeqiao12 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
      uint32_t ins_size_t = static_cast<uint32_t>(ins_size);
      MLUCnnl::AddN(ctx, ins_size_t, desc_vector.data(), inputs.data(),
                    output_desc.get(), GetBasePtr(out));

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Expected type of Output(out) must be Tensor or But got "
          "unsupport type: %s.",
          framework::ToTypeName(out_var->Type())));
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_MLU_KERNEL(
    sum, ops::SumMLUKernel<paddle::platform::MLUDeviceContext, float>,
    ops::SumMLUKernel<paddle::platform::MLUDeviceContext,
                      paddle::platform::float16>);