未验证 提交 55d6b87c 编写于 作者: J joeqiao12 提交者: GitHub

sum op (#39165)

上级 b75507d3
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sum_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class SumMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto out_var = ctx.OutputVar("Out");
if (out_var->IsType<framework::LoDTensor>()) {
// init
auto *out = out_var->GetMutable<framework::LoDTensor>();
auto ins = ctx.MultiInput<Tensor>("X");
out->mutable_data<T>(ctx.GetPlace());
auto place = ctx.GetPlace();
int ins_size = static_cast<int>(ins.size());
if (ins_size == 1) {
TensorCopy(*ins[0], place, out);
return;
}
// MLU shoul do sth
std::vector<const void *> inputs;
std::vector<MLUCnnlTensorDesc> input_descs;
std::vector<cnnlTensorDescriptor_t> desc_vector;
for (int i = 0; i < ins_size; i++) {
input_descs.emplace_back(MLUCnnlTensorDesc(
*ins[i], CNNL_LAYOUT_ARRAY, ToCnnlDataType(ins[i]->type())));
desc_vector.push_back(input_descs.back().get());
inputs.push_back(GetBasePtr(ins[i]));
}
// init out tensors
MLUCnnlTensorDesc output_desc(*out, CNNL_LAYOUT_ARRAY,
ToCnnlDataType(out->type()));
uint32_t ins_size_t = static_cast<uint32_t>(ins_size);
MLUCnnl::AddN(ctx, ins_size_t, desc_vector.data(), inputs.data(),
output_desc.get(), GetBasePtr(out));
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Expected type of Output(out) must be Tensor or But got "
"unsupport type: %s.",
framework::ToTypeName(out_var->Type())));
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(
sum, ops::SumMLUKernel<paddle::platform::MLUDeviceContext, float>,
ops::SumMLUKernel<paddle::platform::MLUDeviceContext,
paddle::platform::float16>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
paddle.enable_static()
SEED = 2021
class TestSum1(OpTest):
def setUp(self):
self.set_mlu()
self.init_dtype()
self.op_type = "sum"
self.place = paddle.MLUPlace(0)
x0 = np.random.random((3, 40)).astype(self.dtype)
x1 = np.random.random((3, 40)).astype(self.dtype)
x2 = np.random.random((3, 40)).astype(self.dtype)
self.inputs = {'X': [("x0", x0), ("x1", x1), ("x2", x2)]}
y = x0 + x1 + x2
self.outputs = {'Out': y}
self.attrs = {'use_mkldnn': False}
def init_dtype(self):
self.dtype = np.float32
def set_mlu(self):
self.__class__.use_mlu = True
def test_check_output(self):
self.check_output_with_place(self.place)
class TestSum2(OpTest):
def setUp(self):
self.set_mlu()
self.init_dtype()
self.op_type = "sum"
self.place = paddle.MLUPlace(0)
x0 = np.random.random((3, 3)).astype(self.dtype)
x1 = np.random.random((3, 3)).astype(self.dtype)
x2 = np.random.random((3, 3)).astype(self.dtype)
x3 = np.random.random((3, 3)).astype(self.dtype)
self.inputs = {'X': [("x0", x0), ("x1", x1), ("x2", x2), ("x3", x3)]}
# There will be a problem if just using `y=x0+x1+x2+x3` to calculate the
# summation result as the reference standard result. The reason is that
# numpy's fp16 data has precision loss when doing `add` operation.
# For example, the results of `x0+x1+x2+x3` is different from that of
# `x3+x2+x1+x0` if the dtype is fp16.
# Therefore, converting the input to fp32 for calculation.
y = (x0.astype(np.float32) + x1.astype(np.float32) +
x2.astype(np.float32) + x3.astype(np.float32)).astype(self.dtype)
self.outputs = {'Out': y}
self.attrs = {'use_mkldnn': False}
def init_dtype(self):
self.dtype = np.float16
def set_mlu(self):
self.__class__.use_mlu = True
def test_check_output(self):
self.check_output_with_place(self.place)
class TestSum3(OpTest):
def setUp(self):
self.set_mlu()
self.init_dtype()
self.op_type = "sum"
self.place = paddle.MLUPlace(0)
x0 = np.random.random((3, 3)).astype(self.dtype)
self.inputs = {'X': [("x0", x0)]}
y = x0
self.outputs = {'Out': y}
self.attrs = {'use_mkldnn': False}
def init_dtype(self):
self.dtype = np.float16
def set_mlu(self):
self.__class__.use_mlu = True
def test_check_output(self):
self.check_output_with_place(self.place)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册