kl.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import warnings

import paddle
18
from paddle.distribution.bernoulli import Bernoulli
19 20
from paddle.distribution.beta import Beta
from paddle.distribution.categorical import Categorical
21
from paddle.distribution.cauchy import Cauchy
22 23 24
from paddle.distribution.dirichlet import Dirichlet
from paddle.distribution.distribution import Distribution
from paddle.distribution.exponential_family import ExponentialFamily
25
from paddle.distribution.geometric import Geometric
26
from paddle.distribution.laplace import Laplace
27
from paddle.distribution.lognormal import LogNormal
28
from paddle.distribution.normal import Normal
29
from paddle.distribution.uniform import Uniform
30
from paddle.fluid.framework import _non_static_mode
31 32 33 34 35 36 37 38 39 40 41 42

__all__ = ["register_kl", "kl_divergence"]

_REGISTER_TABLE = {}


def kl_divergence(p, q):
    r"""
    Kullback-Leibler divergence between distribution p and q.

    .. math::

43
        KL(p||q) = \int p(x)log\frac{p(x)}{q(x)} \mathrm{d}x
44 45

    Args:
46 47
        p (Distribution): ``Distribution`` object. Inherits from the Distribution Base class.
        q (Distribution): ``Distribution`` object. Inherits from the Distribution Base class.
48 49

    Returns:
50
        Tensor, Batchwise KL-divergence between distribution p and q.
51 52 53 54 55 56 57 58 59 60 61

    Examples:

        .. code-block:: python

            import paddle

            p = paddle.distribution.Beta(alpha=0.5, beta=0.5)
            q = paddle.distribution.Beta(alpha=0.3, beta=0.7)

            print(paddle.distribution.kl_divergence(p, q))
62
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
63
            #        0.21193528)
64 65 66 67 68 69 70 71

    """
    return _dispatch(type(p), type(q))(p, q)


def register_kl(cls_p, cls_q):
    """Decorator for register a KL divergence implemention function.

72 73 74 75 76
    The ``kl_divergence(p, q)`` function will search concrete implemention
    functions registered by ``register_kl``, according to multi-dispatch pattern.
    If an implemention function is found, it will return the result, otherwise,
    it will raise ``NotImplementError`` exception. Users can register
    implemention funciton by the decorator.
77

78
    Args:
79 80
        cls_p (Distribution): The Distribution type of Instance p. Subclass derived from ``Distribution``.
        cls_q (Distribution): The Distribution type of Instance q. Subclass derived from ``Distribution``.
81 82 83 84 85 86 87 88 89 90

    Examples:
        .. code-block:: python

            import paddle

            @paddle.distribution.register_kl(paddle.distribution.Beta, paddle.distribution.Beta)
            def kl_beta_beta():
                pass # insert implementation here
    """
91 92 93
    if not issubclass(cls_p, Distribution) or not issubclass(
        cls_q, Distribution
    ):
94 95 96 97 98 99 100 101 102 103
        raise TypeError('cls_p and cls_q must be subclass of Distribution')

    def decorator(f):
        _REGISTER_TABLE[cls_p, cls_q] = f
        return f

    return decorator


def _dispatch(cls_p, cls_q):
104
    """Multiple dispatch into concrete implement function."""
105 106

    # find all matched super class pair of p and q
107 108 109 110 111
    matchs = [
        (super_p, super_q)
        for super_p, super_q in _REGISTER_TABLE
        if issubclass(cls_p, super_p) and issubclass(cls_q, super_q)
    ]
112 113 114 115 116 117 118 119
    if not matchs:
        raise NotImplementedError

    left_p, left_q = min(_Compare(*m) for m in matchs).classes
    right_p, right_q = min(_Compare(*reversed(m)) for m in matchs).classes

    if _REGISTER_TABLE[left_p, left_q] is not _REGISTER_TABLE[right_p, right_q]:
        warnings.warn(
120 121 122 123 124 125 126 127
            'Ambiguous kl_divergence({}, {}). Please register_kl({}, {})'.format(
                cls_p.__name__,
                cls_q.__name__,
                left_p.__name__,
                right_q.__name__,
            ),
            RuntimeWarning,
        )
128 129 130 131 132

    return _REGISTER_TABLE[left_p, left_q]


@functools.total_ordering
133
class _Compare:
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    def __init__(self, *classes):
        self.classes = classes

    def __eq__(self, other):
        return self.classes == other.classes

    def __le__(self, other):
        for cls_x, cls_y in zip(self.classes, other.classes):
            if not issubclass(cls_x, cls_y):
                return False
            if cls_x is not cls_y:
                break
        return True


149 150 151 152 153
@register_kl(Bernoulli, Bernoulli)
def _kl_bernoulli_bernoulli(p, q):
    return p.kl_divergence(q)


154 155
@register_kl(Beta, Beta)
def _kl_beta_beta(p, q):
156 157 158 159 160 161 162 163 164 165
    return (
        (q.alpha.lgamma() + q.beta.lgamma() + (p.alpha + p.beta).lgamma())
        - (p.alpha.lgamma() + p.beta.lgamma() + (q.alpha + q.beta).lgamma())
        + ((p.alpha - q.alpha) * p.alpha.digamma())
        + ((p.beta - q.beta) * p.beta.digamma())
        + (
            ((q.alpha + q.beta) - (p.alpha + p.beta))
            * (p.alpha + p.beta).digamma()
        )
    )
166 167 168 169 170


@register_kl(Dirichlet, Dirichlet)
def _kl_dirichlet_dirichlet(p, q):
    return (
171 172 173 174 175 176 177 178 179 180 181 182
        (p.concentration.sum(-1).lgamma() - q.concentration.sum(-1).lgamma())
        - ((p.concentration.lgamma() - q.concentration.lgamma()).sum(-1))
        + (
            (
                (p.concentration - q.concentration)
                * (
                    p.concentration.digamma()
                    - p.concentration.sum(-1).digamma().unsqueeze(-1)
                )
            ).sum(-1)
        )
    )
183 184 185 186 187 188 189


@register_kl(Categorical, Categorical)
def _kl_categorical_categorical(p, q):
    return p.kl_divergence(q)


190 191 192 193 194
@register_kl(Cauchy, Cauchy)
def _kl_cauchy_cauchy(p, q):
    return p.kl_divergence(q)


195 196 197 198 199 200 201 202 203 204
@register_kl(Normal, Normal)
def _kl_normal_normal(p, q):
    return p.kl_divergence(q)


@register_kl(Uniform, Uniform)
def _kl_uniform_uniform(p, q):
    return p.kl_divergence(q)


205 206 207 208 209
@register_kl(Laplace, Laplace)
def _kl_laplace_laplace(p, q):
    return p.kl_divergence(q)


210 211 212 213 214
@register_kl(Geometric, Geometric)
def _kl_geometric_geometric(p, q):
    return p.kl_divergence(q)


215 216
@register_kl(ExponentialFamily, ExponentialFamily)
def _kl_expfamily_expfamily(p, q):
217
    """Compute kl-divergence using `Bregman divergences <https://www.lix.polytechnique.fr/~nielsen/EntropyEF-ICIP2010.pdf>`_"""
218 219 220 221 222 223 224 225 226 227 228 229 230 231
    if not type(p) == type(q):
        raise NotImplementedError

    p_natural_params = []
    for param in p._natural_parameters:
        param = param.detach()
        param.stop_gradient = False
        p_natural_params.append(param)

    q_natural_params = q._natural_parameters

    p_log_norm = p._log_normalizer(*p_natural_params)

    try:
J
Jiabin Yang 已提交
232
        if _non_static_mode():
233 234 235
            p_grads = paddle.grad(
                p_log_norm, p_natural_params, create_graph=True
            )
236 237 238 239
        else:
            p_grads = paddle.static.gradients(p_log_norm, p_natural_params)
    except RuntimeError as e:
        raise TypeError(
240 241 242 243
            "Cann't compute kl_divergence({cls_p}, {cls_q}) use bregman divergence. Please register_kl({cls_p}, {cls_q}).".format(
                cls_p=type(p).__name__, cls_q=type(q).__name__
            )
        ) from e
244 245

    kl = q._log_normalizer(*q_natural_params) - p_log_norm
246 247 248
    for p_param, q_param, p_grad in zip(
        p_natural_params, q_natural_params, p_grads
    ):
249 250 251 252 253 254
        term = (q_param - p_param) * p_grad
        kl -= _sum_rightmost(term, len(q.event_shape))

    return kl


255 256 257 258 259
@register_kl(LogNormal, LogNormal)
def _kl_lognormal_lognormal(p, q):
    return p._base.kl_divergence(q._base)


260 261
def _sum_rightmost(value, n):
    return value.sum(list(range(-n, 0))) if n > 0 else value