Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bca1b0c6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bca1b0c6
编写于
4月 28, 2023
作者:
D
dasen
提交者:
GitHub
4月 28, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【Hackathon 4th No.11】 为 paddle 添加 Geometric Distribution API (#51224)
上级
8f5eae47
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
1042 addition
and
0 deletion
+1042
-0
python/paddle/distribution/__init__.py
python/paddle/distribution/__init__.py
+2
-0
python/paddle/distribution/geometric.py
python/paddle/distribution/geometric.py
+343
-0
python/paddle/distribution/kl.py
python/paddle/distribution/kl.py
+6
-0
test/distribution/test_distribution_geometric.py
test/distribution/test_distribution_geometric.py
+350
-0
test/distribution/test_distribution_geometric_static.py
test/distribution/test_distribution_geometric_static.py
+341
-0
未找到文件。
python/paddle/distribution/__init__.py
浏览文件 @
bca1b0c6
...
...
@@ -29,6 +29,7 @@ from paddle.distribution.transform import * # noqa: F403
from
paddle.distribution.transformed_distribution
import
TransformedDistribution
from
paddle.distribution.uniform
import
Uniform
from
paddle.distribution.laplace
import
Laplace
from
paddle.distribution.geometric
import
Geometric
__all__
=
[
# noqa
'Bernoulli'
,
...
...
@@ -47,6 +48,7 @@ __all__ = [ # noqa
'Laplace'
,
'LogNormal'
,
'Gumbel'
,
'Geometric'
,
]
__all__
.
extend
(
transform
.
__all__
)
python/paddle/distribution/geometric.py
0 → 100644
浏览文件 @
bca1b0c6
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numbers
import
numpy
as
np
import
paddle
from
paddle.distribution
import
distribution
,
uniform
from
paddle.fluid
import
framework
class
Geometric
(
distribution
.
Distribution
):
r
"""
Geometric distribution parameterized by probs.
In probability theory and statistics, the geometric distribution is one of
discrete probability distributions, parameterized by one positive shape parameter, denoted by probs.
In n Bernoulli trials, it takes k trials to get the probability of success for the first time.
In detail, it is: the probability that the first k-1 times failed and the kth time succeeded.
The geometric distribution is a special case of the Pascal distribution when r=1.
The probability mass function (pmf) is
.. math::
Pr(Y=k)=(1-p)^kp
where k is number of trials performed and p is probability of success for each trial and k=0,1,2,3,4..., p belong to (0,1].
Args:
probs (Real|Tensor): Probability parameter.
The value of probs must be positive. When the parameter is a tensor, probs is probability of success for each trial.
Returns:
Geometric distribution for instantiation of probs.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.mean
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [2.])
geom.variance
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [2.])
geom.stddev
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [1.41421354])
"""
def
__init__
(
self
,
probs
):
if
isinstance
(
probs
,
(
numbers
.
Real
,
paddle
.
Tensor
,
framework
.
Variable
)):
if
isinstance
(
probs
,
numbers
.
Real
):
probs
=
paddle
.
full
(
shape
=
(),
fill_value
=
probs
,
dtype
=
paddle
.
float32
)
all_ones
=
paddle
.
full
(
shape
=
probs
.
shape
,
fill_value
=
1
,
dtype
=
probs
.
dtype
)
all_zeros
=
paddle
.
full
(
shape
=
probs
.
shape
,
fill_value
=
0
,
dtype
=
probs
.
dtype
)
all_false
=
paddle
.
full
(
shape
=
probs
.
shape
,
fill_value
=
False
,
dtype
=
bool
)
lessthen_0
=
probs
<=
all_zeros
morethen_1
=
probs
>
all_ones
else
:
raise
TypeError
(
f
"Expected type of probs is Number.Real|Tensor|framework.Variable, but got
{
type
(
probs
)
}
"
)
if
paddle
.
equal_all
(
lessthen_0
,
all_false
)
and
paddle
.
equal_all
(
morethen_1
,
all_false
):
batch_shape
=
tuple
(
probs
.
shape
)
else
:
raise
ValueError
(
"Expected parameter probs of distribution Geometric to satisfy the"
"constraint Interval(lower_bound=0.0, upper_bound=1.0)"
)
self
.
probs
=
probs
super
().
__init__
(
batch_shape
)
@
property
def
mean
(
self
):
"""Mean of geometric distribution."""
return
1.0
/
self
.
probs
@
property
def
variance
(
self
):
"""Variance of geometric distribution."""
return
paddle
.
to_tensor
(
(
1.0
/
self
.
probs
-
1.0
)
/
self
.
probs
,
dtype
=
self
.
probs
.
dtype
,
)
@
property
def
stddev
(
self
):
"""Standard deviation of Geometric distribution."""
return
paddle
.
sqrt
(
self
.
variance
)
def
pmf
(
self
,
k
):
r
"""Probability mass funciotn evaluated at k.
.. math::
P(X=k) = (1-p)^{k-1} p, \quad k=1,2,3,\ldots
Args:
k (int): Value to be evaluated.
Returns:
Tensor: Probability.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.pmf(2)
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [0.25000000])
"""
if
isinstance
(
k
,
(
numbers
.
Integral
,
framework
.
Variable
)):
return
paddle
.
pow
((
1.0
-
self
.
probs
),
k
-
1.0
)
*
self
.
probs
else
:
raise
TypeError
(
f
"Expected type of k is number.Real|framework.Variable, but got
{
type
(
k
)
}
"
)
def
log_pmf
(
self
,
k
):
r
"""Log probability mass function evaluated at k.
.. math::
\log P(X = k) = \log(1-p)^k p
Args:
k (int): Value to be evaluated.
Returns:
Tensor: Log probability.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.log_pmf(2)
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [-1.38629436])
"""
if
isinstance
(
k
,
(
numbers
.
Integral
,
framework
.
Variable
)):
return
paddle
.
log
(
self
.
pmf
(
k
))
else
:
raise
TypeError
(
f
"Expected type of k is number.Real|framework.Variable, but got
{
type
(
k
)
}
"
)
def
sample
(
self
,
shape
=
()):
"""Sample from Geometric distribution with sample shape.
Args:
shape (tuple(int)): Sample shape.
Returns:
Sampled data with shape `sample_shape` + `batch_shape` + `event_shape`.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.sample((2,2))
# Tensor(shape=[2, 2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[[4.28128004],
# [0.53546447]],
# [[0.88012987],
# [0.54070371]]])
"""
with
paddle
.
no_grad
():
return
self
.
rsample
(
shape
)
def
rsample
(
self
,
shape
=
()):
"""Generate samples of the specified shape.
Args:
shape(tuple(int)): The shape of generated samples.
Returns:
Tensor: A sample tensor that fits the Geometric distribution.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.rsample((2,2))
# Tensor(shape=[2, 2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[[2.90974379],
# [1.28049409]],
# [[4.60141420],
# [2.98836184]]])
"""
shape
=
distribution
.
Distribution
.
_extend_shape
(
self
,
sample_shape
=
shape
)
tiny
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
sample_uniform
=
uniform
.
Uniform
(
low
=
float
(
tiny
),
high
=
float
(
1
))
new_t
=
sample_uniform
.
sample
(
list
(
shape
))
return
paddle
.
log
(
new_t
)
/
paddle
.
log1p
(
-
(
self
.
probs
))
def
entropy
(
self
):
r
"""Entropy of dirichlet distribution.
.. math::
H(X) = -\left[\frac{1}{p} \log p + \frac{1-p}{p^2} \log (1-p) \right]
Returns:
Tensor: Entropy.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.entropy()
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [1.38629436])
"""
x
=
(
1.0
-
self
.
probs
)
*
paddle
.
log
(
1.0
-
self
.
probs
)
y
=
self
.
probs
*
paddle
.
log
(
self
.
probs
)
return
-
(
x
+
y
)
/
self
.
probs
def
cdf
(
self
,
k
):
r
"""Cdf of geometric distribution.
.. math::
F(X \leq k) = 1 - (1-p)^k, \quad k=0,1,2,\ldots
Args:
k: The number of trials performed.
Returns:
Tensor: Entropy.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.cdf(4)
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [0.93750000])
"""
if
isinstance
(
k
,
(
numbers
.
Integral
,
framework
.
Variable
)):
return
1.0
-
paddle
.
pow
((
1.0
-
self
.
probs
),
k
)
else
:
raise
TypeError
(
f
"Expected type of k is number.Real|framework.Variable, but got
{
type
(
k
)
}
"
)
def
kl_divergence
(
self
,
other
):
r
"""Calculate the KL divergence KL(self || other) with two Geometric instances.
.. math::
KL(P \| Q) = \frac{p}{q} \log \frac{p}{q} + \log (1-p) - \log (1-q)
Args:
other (Geometric): An instance of Geometric.
Returns:
Tensor: The kl-divergence between two geometric distributions.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom_p = Geometric(0.5)
geom_q = Geometric(0.1)
geom_p.kl_divergence(geom_q)
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [0.51082563])
"""
if
isinstance
(
other
,
Geometric
):
p
,
q
=
self
.
probs
,
other
.
probs
return
p
*
paddle
.
log
(
p
/
q
)
+
(
1.0
-
p
)
*
paddle
.
log
(
(
1.0
-
p
)
/
(
1.0
-
q
)
)
else
:
raise
TypeError
(
f
"Exected type of other is geometric.Geometric, but got
{
type
(
other
)
}
"
)
python/paddle/distribution/kl.py
浏览文件 @
bca1b0c6
...
...
@@ -21,6 +21,7 @@ from paddle.distribution.categorical import Categorical
from
paddle.distribution.dirichlet
import
Dirichlet
from
paddle.distribution.distribution
import
Distribution
from
paddle.distribution.exponential_family
import
ExponentialFamily
from
paddle.distribution.geometric
import
Geometric
from
paddle.distribution.laplace
import
Laplace
from
paddle.distribution.lognormal
import
LogNormal
from
paddle.distribution.normal
import
Normal
...
...
@@ -200,6 +201,11 @@ def _kl_laplace_laplace(p, q):
return
p
.
kl_divergence
(
q
)
@
register_kl
(
Geometric
,
Geometric
)
def
_kl_geometric_geometric
(
p
,
q
):
return
p
.
kl_divergence
(
q
)
@
register_kl
(
ExponentialFamily
,
ExponentialFamily
)
def
_kl_expfamily_expfamily
(
p
,
q
):
"""Compute kl-divergence using `Bregman divergences <https://www.lix.polytechnique.fr/~nielsen/EntropyEF-ICIP2010.pdf>`_"""
...
...
test/distribution/test_distribution_geometric.py
0 → 100644
浏览文件 @
bca1b0c6
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numbers
import
unittest
import
numpy
as
np
import
scipy.stats
from
config
import
ATOL
,
DEVICES
,
RTOL
from
parameterize
import
TEST_CASE_NAME
,
parameterize_cls
,
place
,
xrand
import
paddle
from
paddle.distribution
import
geometric
,
kl
from
paddle.nn.functional
import
log_softmax
np
.
random
.
seed
(
2023
)
@
place
(
DEVICES
)
@
parameterize_cls
(
(
TEST_CASE_NAME
,
'probs'
),
[
(
'one-dim'
,
xrand
(
(
2
,),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
),
(
'multi-dim'
,
xrand
(
(
2
,
3
),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
),
],
)
class
TestGeometric
(
unittest
.
TestCase
):
def
setUp
(
self
):
probs
=
self
.
probs
if
not
isinstance
(
self
.
probs
,
numbers
.
Real
):
probs
=
paddle
.
to_tensor
(
self
.
probs
,
dtype
=
paddle
.
float32
)
self
.
_paddle_geom
=
geometric
.
Geometric
(
probs
)
def
test_mean
(
self
):
with
paddle
.
fluid
.
dygraph
.
guard
(
self
.
place
):
np
.
testing
.
assert_allclose
(
self
.
_paddle_geom
.
mean
,
scipy
.
stats
.
geom
.
mean
(
self
.
probs
),
rtol
=
RTOL
.
get
(
str
(
self
.
_paddle_geom
.
probs
.
numpy
().
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
_paddle_geom
.
probs
.
numpy
().
dtype
)),
)
def
test_variance
(
self
):
with
paddle
.
fluid
.
dygraph
.
guard
(
self
.
place
):
np
.
testing
.
assert_allclose
(
self
.
_paddle_geom
.
variance
,
scipy
.
stats
.
geom
.
var
(
self
.
probs
),
rtol
=
RTOL
.
get
(
str
(
self
.
_paddle_geom
.
probs
.
numpy
().
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
_paddle_geom
.
probs
.
numpy
().
dtype
)),
)
def
test_stddev
(
self
):
with
paddle
.
fluid
.
dygraph
.
guard
(
self
.
place
):
np
.
testing
.
assert_allclose
(
self
.
_paddle_geom
.
stddev
,
scipy
.
stats
.
geom
.
std
(
self
.
probs
),
rtol
=
RTOL
.
get
(
str
(
self
.
_paddle_geom
.
probs
.
numpy
().
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
_paddle_geom
.
probs
.
numpy
().
dtype
)),
)
def
test_entropy
(
self
):
with
paddle
.
fluid
.
dygraph
.
guard
(
self
.
place
):
np
.
testing
.
assert_allclose
(
self
.
_paddle_geom
.
entropy
(),
scipy
.
stats
.
geom
.
entropy
(
self
.
probs
),
rtol
=
RTOL
.
get
(
str
(
self
.
_paddle_geom
.
probs
.
numpy
().
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
_paddle_geom
.
probs
.
numpy
().
dtype
)),
)
def
test_init_prob_value_error
(
self
):
with
self
.
assertRaises
(
ValueError
):
paddle
.
distribution
.
geometric
.
Geometric
(
2
)
def
test_init_prob_type_error
(
self
):
with
self
.
assertRaises
(
TypeError
):
paddle
.
distribution
.
geometric
.
Geometric
([
2
])
def
test_sample_shape
(
self
):
cases
=
[
{
'input'
:
(),
'expect'
:
()
+
tuple
(
paddle
.
squeeze
(
self
.
_paddle_geom
.
probs
).
shape
),
},
{
'input'
:
(
4
,
2
),
'expect'
:
(
4
,
2
)
+
tuple
(
paddle
.
squeeze
(
self
.
_paddle_geom
.
probs
).
shape
),
},
]
for
case
in
cases
:
self
.
assertTrue
(
tuple
(
self
.
_paddle_geom
.
sample
(
case
.
get
(
'input'
)).
shape
)
==
case
.
get
(
'expect'
)
)
def
test_sample
(
self
):
sample_shape
=
(
80000
,)
samples
=
self
.
_paddle_geom
.
sample
(
sample_shape
)
sample_values
=
samples
.
numpy
()
self
.
assertEqual
(
sample_values
.
dtype
,
self
.
probs
.
dtype
)
np
.
testing
.
assert_allclose
(
sample_values
.
mean
(
axis
=
0
),
scipy
.
stats
.
geom
.
mean
(
self
.
probs
),
rtol
=
0.7
,
atol
=
ATOL
.
get
(
str
(
self
.
_paddle_geom
.
probs
.
numpy
().
dtype
)),
)
np
.
testing
.
assert_allclose
(
sample_values
.
var
(
axis
=
0
),
scipy
.
stats
.
geom
.
var
(
self
.
probs
),
rtol
=
0.7
,
atol
=
ATOL
.
get
(
str
(
self
.
_paddle_geom
.
probs
.
numpy
().
dtype
)),
)
def
test_rsample_shape
(
self
):
cases
=
[
{
'input'
:
(),
'expect'
:
()
+
tuple
(
paddle
.
squeeze
(
self
.
_paddle_geom
.
probs
).
shape
),
},
{
'input'
:
(
2
,
5
),
'expect'
:
(
2
,
5
)
+
tuple
(
paddle
.
squeeze
(
self
.
_paddle_geom
.
probs
).
shape
),
},
]
for
case
in
cases
:
self
.
assertTrue
(
tuple
(
self
.
_paddle_geom
.
rsample
(
case
.
get
(
'input'
)).
shape
)
==
case
.
get
(
'expect'
)
)
def
test_rsample
(
self
):
sample_shape
=
(
100000
,)
samples
=
self
.
_paddle_geom
.
rsample
(
sample_shape
)
sample_values
=
samples
.
numpy
()
self
.
assertEqual
(
sample_values
.
dtype
,
self
.
probs
.
dtype
)
np
.
testing
.
assert_allclose
(
sample_values
.
mean
(
axis
=
0
),
scipy
.
stats
.
geom
.
mean
(
self
.
probs
),
rtol
=
0.7
,
atol
=
ATOL
.
get
(
str
(
self
.
_paddle_geom
.
probs
.
numpy
().
dtype
)),
)
np
.
testing
.
assert_allclose
(
sample_values
.
var
(
axis
=
0
),
scipy
.
stats
.
geom
.
var
(
self
.
probs
),
rtol
=
0.7
,
atol
=
ATOL
.
get
(
str
(
self
.
_paddle_geom
.
probs
.
numpy
().
dtype
)),
)
def
test_back_rsample
(
self
):
sample_shape
=
(
100000
,)
with
paddle
.
fluid
.
dygraph
.
guard
(
self
.
place
):
self
.
_paddle_geom
.
probs
.
stop_gradient
=
False
rs_value
=
self
.
_paddle_geom
.
rsample
(
sample_shape
)
softmax_rs
=
log_softmax
(
rs_value
)
grads
=
paddle
.
grad
([
softmax_rs
],
[
self
.
_paddle_geom
.
probs
])
self
.
assertEqual
(
len
(
grads
),
1
)
self
.
assertEqual
(
grads
[
0
].
dtype
,
self
.
_paddle_geom
.
probs
.
dtype
)
self
.
assertEqual
(
grads
[
0
].
shape
,
self
.
_paddle_geom
.
probs
.
shape
)
@
place
(
DEVICES
)
@
parameterize_cls
(
(
TEST_CASE_NAME
,
'probs'
,
'value'
),
[
(
'one-dim'
,
xrand
(
(
2
,),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
5
,
),
(
'mult-dim'
,
xrand
(
(
2
,
2
),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
5
,
),
(
'mult-dim'
,
xrand
(
(
2
,
2
,
2
),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
5
,
),
],
)
class
TestGeometricPMF
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_paddle_geom
=
geometric
.
Geometric
(
probs
=
paddle
.
to_tensor
(
self
.
probs
)
)
def
test_pmf
(
self
):
with
paddle
.
fluid
.
dygraph
.
guard
(
self
.
place
):
np
.
testing
.
assert_allclose
(
self
.
_paddle_geom
.
pmf
(
self
.
value
),
scipy
.
stats
.
geom
.
pmf
(
self
.
value
,
self
.
probs
),
rtol
=
RTOL
.
get
(
str
(
self
.
probs
.
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
probs
.
dtype
)),
)
def
test_log_pmf
(
self
):
with
paddle
.
fluid
.
dygraph
.
guard
(
self
.
place
):
np
.
testing
.
assert_allclose
(
self
.
_paddle_geom
.
log_pmf
(
self
.
value
),
scipy
.
stats
.
geom
.
logpmf
(
self
.
value
,
self
.
probs
),
rtol
=
RTOL
.
get
(
str
(
self
.
probs
.
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
probs
.
dtype
)),
)
def
test_cdf
(
self
):
with
paddle
.
fluid
.
dygraph
.
guard
(
self
.
place
):
np
.
testing
.
assert_allclose
(
self
.
_paddle_geom
.
cdf
(
self
.
value
),
scipy
.
stats
.
geom
.
cdf
(
self
.
value
,
self
.
probs
),
rtol
=
RTOL
.
get
(
str
(
self
.
_paddle_geom
.
probs
.
numpy
().
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
_paddle_geom
.
probs
.
numpy
().
dtype
)),
)
def
test_pmf_error
(
self
):
self
.
assertRaises
(
TypeError
,
self
.
_paddle_geom
.
pmf
,
[
1
,
2
])
def
test_log_pmf_error
(
self
):
self
.
assertRaises
(
TypeError
,
self
.
_paddle_geom
.
log_pmf
,
[
1
,
2
])
def
test_cdf_error
(
self
):
self
.
assertRaises
(
TypeError
,
self
.
_paddle_geom
.
cdf
,
[
1
,
2
])
@
place
(
DEVICES
)
@
parameterize_cls
(
(
TEST_CASE_NAME
,
'probs1'
,
'probs2'
),
[
(
'one-dim'
,
xrand
(
(
2
,),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
xrand
(
(
2
,),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
),
(
'multi-dim'
,
xrand
(
(
2
,
2
),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
xrand
(
(
2
,
2
),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
),
],
)
class
TestGeometricKL
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
disable_static
()
self
.
_geometric1
=
geometric
.
Geometric
(
probs
=
paddle
.
to_tensor
(
self
.
probs1
)
)
self
.
_geometric2
=
geometric
.
Geometric
(
probs
=
paddle
.
to_tensor
(
self
.
probs2
)
)
def
test_kl_divergence
(
self
):
np
.
testing
.
assert_allclose
(
kl
.
kl_divergence
(
self
.
_geometric1
,
self
.
_geometric2
),
self
.
_kl
(),
rtol
=
RTOL
.
get
(
str
(
self
.
_geometric1
.
probs
.
numpy
().
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
_geometric1
.
probs
.
numpy
().
dtype
)),
)
def
test_kl1_error
(
self
):
self
.
assertRaises
(
TypeError
,
self
.
_geometric1
.
kl_divergence
,
paddle
.
distribution
.
beta
.
Beta
,
)
def
test_kl2_error
(
self
):
self
.
assertRaises
(
TypeError
,
self
.
_geometric2
.
kl_divergence
,
paddle
.
distribution
.
beta
.
Beta
,
)
def
_kl
(
self
):
return
self
.
probs1
*
np
.
log
(
self
.
probs1
/
self
.
probs2
)
+
(
1.0
-
self
.
probs1
)
*
np
.
log
((
1.0
-
self
.
probs1
)
/
(
1.0
-
self
.
probs2
))
if
__name__
==
'__main__'
:
unittest
.
main
()
test/distribution/test_distribution_geometric_static.py
0 → 100644
浏览文件 @
bca1b0c6
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
scipy.stats
from
config
import
ATOL
,
DEVICES
,
RTOL
from
parameterize
import
TEST_CASE_NAME
,
parameterize_cls
,
place
,
xrand
import
paddle
from
paddle.distribution
import
geometric
np
.
random
.
seed
(
2023
)
paddle
.
enable_static
()
@
place
(
DEVICES
)
@
parameterize_cls
(
(
TEST_CASE_NAME
,
'probs'
),
[
(
'one-dim'
,
xrand
(
(
2
,),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
),
(
'multi-dim'
,
xrand
(
(
2
,
3
),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
),
],
)
class
TestGeometric
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
program
=
paddle
.
static
.
Program
()
self
.
executor
=
paddle
.
static
.
Executor
(
self
.
place
)
with
paddle
.
static
.
program_guard
(
self
.
program
):
# scale no need convert to tensor for scale input unittest
probs
=
paddle
.
static
.
data
(
'probs'
,
self
.
probs
.
shape
,
self
.
probs
.
dtype
)
self
.
_paddle_geometric
=
geometric
.
Geometric
(
probs
)
self
.
feeds
=
{
'probs'
:
self
.
probs
}
def
test_mean
(
self
):
with
paddle
.
static
.
program_guard
(
self
.
program
):
[
mean
]
=
self
.
executor
.
run
(
self
.
program
,
feed
=
self
.
feeds
,
fetch_list
=
[
self
.
_paddle_geometric
.
mean
],
)
np
.
testing
.
assert_allclose
(
mean
,
scipy
.
stats
.
geom
.
mean
(
self
.
probs
),
rtol
=
RTOL
.
get
(
str
(
self
.
probs
.
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
probs
.
dtype
)),
)
def
test_variance
(
self
):
with
paddle
.
static
.
program_guard
(
self
.
program
):
[
variance
]
=
self
.
executor
.
run
(
self
.
program
,
feed
=
self
.
feeds
,
fetch_list
=
[
self
.
_paddle_geometric
.
variance
],
)
np
.
testing
.
assert_allclose
(
variance
,
scipy
.
stats
.
geom
.
var
(
self
.
probs
),
rtol
=
RTOL
.
get
(
str
(
self
.
probs
.
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
probs
.
dtype
)),
)
def
test_stddev
(
self
):
with
paddle
.
static
.
program_guard
(
self
.
program
):
[
stddev
]
=
self
.
executor
.
run
(
self
.
program
,
feed
=
self
.
feeds
,
fetch_list
=
[
self
.
_paddle_geometric
.
stddev
],
)
np
.
testing
.
assert_allclose
(
stddev
,
scipy
.
stats
.
geom
.
std
(
self
.
probs
),
rtol
=
RTOL
.
get
(
str
(
self
.
probs
.
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
probs
.
dtype
)),
)
def
test_sample
(
self
):
with
paddle
.
static
.
program_guard
(
self
.
program
):
[
data
]
=
self
.
executor
.
run
(
self
.
program
,
feed
=
self
.
feeds
,
fetch_list
=
self
.
_paddle_geometric
.
sample
(),
)
self
.
assertTrue
(
data
.
shape
,
np
.
broadcast_arrays
(
self
.
probs
)[
0
].
shape
)
def
test_rsample
(
self
):
with
paddle
.
static
.
program_guard
(
self
.
program
):
[
data
]
=
self
.
executor
.
run
(
self
.
program
,
feed
=
self
.
feeds
,
fetch_list
=
self
.
_paddle_geometric
.
rsample
(),
)
self
.
assertTrue
(
data
.
shape
,
np
.
broadcast_arrays
(
self
.
probs
)[
0
].
shape
)
def
test_entropy
(
self
):
with
paddle
.
static
.
program_guard
(
self
.
program
):
[
entropy
]
=
self
.
executor
.
run
(
self
.
program
,
feed
=
self
.
feeds
,
fetch_list
=
[
self
.
_paddle_geometric
.
entropy
()],
)
np
.
testing
.
assert_allclose
(
entropy
,
scipy
.
stats
.
geom
.
entropy
(
self
.
probs
),
rtol
=
RTOL
.
get
(
str
(
self
.
probs
.
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
probs
.
dtype
)),
)
def
test_init_prob_type_error
(
self
):
with
self
.
assertRaises
(
TypeError
):
paddle
.
distribution
.
geometric
.
Geometric
([
0.5
])
@
place
(
DEVICES
)
@
parameterize_cls
(
(
TEST_CASE_NAME
,
'probs'
,
'value'
),
[
(
'one-dim'
,
xrand
(
(
2
,),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
5
,
),
(
'mult-dim'
,
xrand
(
(
2
,
2
),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
5
,
),
(
'mult-dim'
,
xrand
(
(
2
,
2
,
2
),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
5
,
),
],
)
class
TestGeometricPMF
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
program
=
paddle
.
static
.
Program
()
self
.
executor
=
paddle
.
static
.
Executor
(
self
.
place
)
with
paddle
.
static
.
program_guard
(
self
.
program
):
probs
=
paddle
.
static
.
data
(
'probs'
,
self
.
probs
.
shape
,
self
.
probs
.
dtype
)
self
.
_paddle_geometric
=
geometric
.
Geometric
(
probs
)
self
.
feeds
=
{
'probs'
:
self
.
probs
,
'value'
:
self
.
value
}
def
test_pmf
(
self
):
with
paddle
.
static
.
program_guard
(
self
.
program
):
[
pmf
]
=
self
.
executor
.
run
(
self
.
program
,
feed
=
self
.
feeds
,
fetch_list
=
[
self
.
_paddle_geometric
.
pmf
(
self
.
value
)],
)
np
.
testing
.
assert_allclose
(
pmf
,
scipy
.
stats
.
geom
.
pmf
(
self
.
value
,
self
.
probs
),
rtol
=
RTOL
.
get
(
str
(
self
.
probs
.
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
probs
.
dtype
)),
)
def
test_log_pmf
(
self
):
with
paddle
.
static
.
program_guard
(
self
.
program
):
[
log_pmf
]
=
self
.
executor
.
run
(
self
.
program
,
feed
=
self
.
feeds
,
fetch_list
=
[
self
.
_paddle_geometric
.
log_pmf
(
self
.
value
)],
)
np
.
testing
.
assert_allclose
(
log_pmf
,
scipy
.
stats
.
geom
.
logpmf
(
self
.
value
,
self
.
probs
),
rtol
=
RTOL
.
get
(
str
(
self
.
probs
.
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
probs
.
dtype
)),
)
def
test_cdf
(
self
):
with
paddle
.
static
.
program_guard
(
self
.
program
):
[
cdf
]
=
self
.
executor
.
run
(
self
.
program
,
feed
=
self
.
feeds
,
fetch_list
=
[
self
.
_paddle_geometric
.
cdf
(
self
.
value
)],
)
np
.
testing
.
assert_allclose
(
cdf
,
scipy
.
stats
.
geom
.
cdf
(
self
.
value
,
self
.
probs
),
rtol
=
RTOL
.
get
(
str
(
self
.
probs
.
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
probs
.
dtype
)),
)
def
test_pmf_error
(
self
):
self
.
assertRaises
(
TypeError
,
self
.
_paddle_geometric
.
pmf
,
[
1
,
2
])
def
test_log_pmf_error
(
self
):
self
.
assertRaises
(
TypeError
,
self
.
_paddle_geometric
.
log_pmf
,
[
1
,
2
])
def
test_cdf_error
(
self
):
self
.
assertRaises
(
TypeError
,
self
.
_paddle_geometric
.
cdf
,
[
1
,
2
])
@
place
(
DEVICES
)
@
parameterize_cls
(
(
TEST_CASE_NAME
,
'probs1'
,
'probs2'
),
[
(
'one-dim'
,
xrand
(
(
2
,),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
xrand
(
(
2
,),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
),
(
'multi-dim'
,
xrand
(
(
2
,
2
),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
xrand
(
(
2
,
2
),
dtype
=
'float32'
,
min
=
np
.
finfo
(
dtype
=
'float32'
).
tiny
,
max
=
1.0
,
),
),
],
)
class
TestGeometricKL
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
enable_static
()
self
.
program_p
=
paddle
.
static
.
Program
()
self
.
program_q
=
paddle
.
static
.
Program
()
self
.
executor
=
paddle
.
static
.
Executor
(
self
.
place
)
with
paddle
.
static
.
program_guard
(
self
.
program_p
,
self
.
program_q
):
probs_p
=
paddle
.
static
.
data
(
'probs1'
,
self
.
probs1
.
shape
,
self
.
probs1
.
dtype
)
probs_q
=
paddle
.
static
.
data
(
'probs2'
,
self
.
probs2
.
shape
,
self
.
probs2
.
dtype
)
self
.
_paddle_geomP
=
geometric
.
Geometric
(
probs_p
)
self
.
_paddle_geomQ
=
geometric
.
Geometric
(
probs_q
)
self
.
feeds
=
{
'probs1'
:
self
.
probs1
,
'probs2'
:
self
.
probs2
,
}
def
test_kl_divergence
(
self
):
with
paddle
.
static
.
program_guard
(
self
.
program_p
,
self
.
program_q
):
self
.
executor
.
run
(
self
.
program_q
)
[
kl_diver
]
=
self
.
executor
.
run
(
self
.
program_p
,
feed
=
self
.
feeds
,
fetch_list
=
[
self
.
_paddle_geomP
.
kl_divergence
(
self
.
_paddle_geomQ
)
],
)
np
.
testing
.
assert_allclose
(
kl_diver
,
self
.
_kl
(),
rtol
=
RTOL
.
get
(
str
(
self
.
probs1
.
dtype
)),
atol
=
ATOL
.
get
(
str
(
self
.
probs1
.
dtype
)),
)
def
test_kl1_error
(
self
):
self
.
assertRaises
(
TypeError
,
self
.
_paddle_geomP
.
kl_divergence
,
paddle
.
distribution
.
beta
.
Beta
,
)
def
test_kl2_error
(
self
):
self
.
assertRaises
(
TypeError
,
self
.
_paddle_geomQ
.
kl_divergence
,
paddle
.
distribution
.
beta
.
Beta
,
)
def
_kl
(
self
):
return
self
.
probs1
*
np
.
log
(
self
.
probs1
/
self
.
probs2
)
+
(
1.0
-
self
.
probs1
)
*
np
.
log
((
1.0
-
self
.
probs1
)
/
(
1.0
-
self
.
probs2
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录