elementwise_div_op.cc 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
16 17
#include <memory>
#include <string>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30 31 32 33 34
template <typename T>
struct SameDimsElemwiseDiv<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VDIV(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

35 36
// use default div function for int32/int64 type because of divison zero
// checking.
37 38 39 40 41 42 43
template <typename T>
struct SameDimsElemwiseDiv<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
44
    default_elementwise_div<platform::CPUDeviceContext, T>(ctx, x, y, z);
45 46 47
  }
};

48 49 50 51
class ElementwiseDivOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Div"; }
  std::string GetEquation() const override { return "Out = X / Y"; }
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Divide two tensors element-wise";
  }
68 69
};

H
hong 已提交
70 71
template <typename T>
class ElementwiseDivGradOpMaker : public framework::SingleGradOpMaker<T> {
72
 public:
H
hong 已提交
73
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
74 75

 protected:
H
hong 已提交
76 77
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
78
    op->SetType("elementwise_div_grad");
79
    op->SetInput("X", this->Input("X"));
H
hong 已提交
80 81 82 83 84 85
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
86 87 88 89
    return op;
  }
};

H
hong 已提交
90 91
template <typename T>
class ElementwiseDivDoubleGradMaker : public framework::SingleGradOpMaker<T> {
92
 public:
H
hong 已提交
93
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
94 95

 protected:
H
hong 已提交
96 97
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
98
    op->SetType("elementwise_div_grad_grad");
H
hong 已提交
99 100 101 102 103
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
104

H
hong 已提交
105
    op->SetAttrMap(this->Attrs());
106

H
hong 已提交
107 108 109
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
110 111 112 113 114

    return op;
  }
};

115 116 117
}  // namespace operators
}  // namespace paddle

G
gongweibao 已提交
118
namespace ops = paddle::operators;
119

120 121
REGISTER_OPERATOR(elementwise_div, ops::ElementwiseOp,
                  ops::ElementwiseDivOpMaker, ops::ElementwiseOpInferVarType,
H
hong 已提交
122 123 124 125 126 127 128
                  ops::ElementwiseDivGradOpMaker<paddle::framework::OpDesc>,
                  ops::ElementwiseDivGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    elementwise_div_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseDivDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseDivDoubleGradMaker<paddle::imperative::OpBase>);
129

130 131
REGISTER_OPERATOR(elementwise_div_grad_grad, ops::ElementwiseDivOpDoubleGrad,
                  ops::ElementwiseDivDoubleGradOpInplace);
132

G
gongweibao 已提交
133 134
REGISTER_OP_CPU_KERNEL(
    elementwise_div,
Q
QI JUN 已提交
135 136 137 138
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, int64_t>);
G
gongweibao 已提交
139 140
REGISTER_OP_CPU_KERNEL(
    elementwise_div_grad,
Q
QI JUN 已提交
141 142 143 144
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
145 146 147 148 149 150 151 152 153 154 155

REGISTER_OP_CPU_KERNEL(
    elementwise_div_grad_grad,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>);