io.py 41.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
16 17
import copyreg
import os
18
import pickle
19
import sys
20 21 22
import warnings
from collections.abc import Iterable

W
WeiXin 已提交
23
import numpy as np
24

25 26 27 28 29
import paddle

# deprecated module import
from paddle import fluid
from paddle.fluid import core
30
from paddle.fluid.framework import (
31 32 33
    EagerParamBase,
    ParamBase,
    Program,
34
    Variable,
35
    _current_expected_place,
36 37
    _dygraph_tracer,
    _non_static_mode,
38
    _varbase_creator,
39
)
40 41 42 43 44 45 46
from paddle.fluid.io import _is_file_path, _is_memory_buffer
from paddle.fluid.io import _legacy_save as _legacy_static_save
from paddle.fluid.io import (
    _open_file_buffer,
    _pack_loaded_dict,
    _pickle_loads_mac,
    _unpack_saved_dict,
47
)
48
from paddle.jit.api import _SaveLoadConfig
49 50 51 52 53 54
from paddle.jit.translated_layer import (
    INFER_MODEL_SUFFIX,
    INFER_PARAMS_SUFFIX,
    _construct_params_and_buffers,
    _construct_program_holders,
)
55

56 57
__all__ = []

58 59 60 61 62

def _build_saved_state_dict(state_dict):
    save_dict = {}
    name_table = {}
    for key, value in state_dict.items():
63
        if isinstance(value, (Variable, core.VarBase, core.eager.Tensor)):
S
Steffy-zxf 已提交
64 65 66
            if value.type == core.VarDesc.VarType.VOCAB:
                save_dict[key] = value.value().get_map_tensor()
            else:
B
Baibaifan 已提交
67 68 69 70
                if not value.value().get_tensor()._is_initialized():
                    raise ValueError(
                        "The saved tensor is not initialized. If you used group sharded, please use save_group_sharded_model."
                    )
S
Steffy-zxf 已提交
71
                save_dict[key] = value.numpy()
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
            name_table[key] = value.name
        else:
            save_dict[key] = value
    save_dict["StructuredToParameterName@@"] = name_table

    return save_dict


def _load_state_dict_from_save_inference_model(model_path, config):
    # 1. load program desc & construct _ProgramHolder
    programs = _construct_program_holders(model_path, config.model_filename)

    # 2. load layer parameters & buffers
    with fluid.dygraph.guard():
        persistable_var_dict = _construct_params_and_buffers(
87 88
            model_path, programs, config.params_filename, append_suffix=False
        )
89 90 91 92 93 94

        # 3. construct state_dict
        load_param_dict = dict()
        for var_name in persistable_var_dict:
            load_param_dict[var_name] = persistable_var_dict[var_name].numpy()

95 96 97
        # if *.info exists, we can recover structured_name
        var_info_filename = str(config.params_filename) + ".info"
        var_info_path = os.path.join(model_path, var_info_filename)
98 99 100 101 102 103
        if os.path.exists(var_info_path):
            with open(var_info_path, 'rb') as f:
                extra_var_info = pickle.load(f)
            structured_para_dict = dict()
            for var_name in load_param_dict:
                structured_name = extra_var_info[var_name].get(
104 105 106 107 108 109
                    'structured_name', None
                )
                assert structured_name is not None, (
                    "Cannot find saved variable (%s)'s structured name in saved model."
                    % var_name
                )
110
                structured_para_dict[structured_name] = load_param_dict[
111 112
                    var_name
                ]
113 114 115 116 117 118
            load_param_dict = structured_para_dict

    return load_param_dict


def _load_state_dict_from_save_params(model_path):
119
    # Try to load all the files in the directory in VarBase format,
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    # the file name is used as the name of VarBase
    load_var_list = []

    # 1. load file names
    var_name_list = []
    for root, _, files in os.walk(model_path):
        for filename in files:
            file_path = os.path.join(root, filename)
            tmp_var_name = os.path.relpath(file_path, model_path)
            var_name = tmp_var_name.replace("\\", "/")
            var_name_list.append(var_name)

    # 2. create and load VarBase
    with fluid.dygraph.guard():
        for name in var_name_list:
            new_var = _varbase_creator(name=name, persistable=True)
            _dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
140 141
                attrs={'file_path': os.path.join(model_path, name)},
            )
142 143 144 145 146 147 148 149 150 151
            load_var_list.append(new_var)

    # 3. construct state_dict
    load_param_dict = dict()
    for var in load_var_list:
        load_param_dict[var.name] = var.numpy()

    return load_param_dict


152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
# NOTE(chenweihang): [ Handling of use cases of API paddle.load ]
# `paddle.load` may be used to load saved results of:
# 1. Expected cases:
#   - need [full filename] when loading
#       - paddle.save
#       - paddle.static.save
#   - need [prefix] when loading [compatible for paddle 2.x]
#       - paddle.jit.save
#       - paddle.static.save_inference_model
#   - need [directory] when loading [compatible for paddle 1.x]
#       - paddle.fluid.io.save_inference_model
#       - paddle.fluid.io.save_params/save_persistable
# 2. Error cases:
#   - no error case
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
176 177
            "of ``path`` is unique." % (path, path)
        )
178 179 180
    elif not prefix_format_exist and not directory_format_exist:
        error_msg = "The ``path`` (%s) to load model not exists."
        # if current path is a prefix, and the path.pdparams or path.pdopt
181
        # is exist, users may want use `paddle.load` load the result of
182 183 184 185
        # `fluid.save_dygraph`, we raise error here for users
        params_file_path = path + ".pdparams"
        opti_file_path = path + ".pdopt"
        if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
186 187 188
            error_msg += (
                "please specify the full file name, not just the file name prefix. For "
                "example, it should be written as `paddle.load('model.pdparams')` instead of "
189
                "`paddle.load('model')`."
190
            )
191 192 193 194 195 196 197 198 199
        raise ValueError(error_msg % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
200 201
                    "not take effect."
                )
202 203 204 205 206
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
207 208
                    "not take effect."
                )
209 210 211 212 213 214 215 216 217
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path

    return model_path, config


def _parse_load_config(configs):
218
    supported_configs = [
219 220 221 222
        'model_filename',
        'params_filename',
        'keep_name_table',
        'return_numpy',
223
    ]
224 225 226 227 228 229

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.load` is not supported."
230 231
                % key
            )
232 233 234 235 236 237

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)
    inner_config.keep_name_table = configs.get('keep_name_table', None)
238
    inner_config.return_numpy = configs.get('return_numpy', False)
239 240 241 242

    return inner_config


243 244 245 246 247 248 249 250
def _parse_save_config(configs):
    supported_configs = ['use_binary_format', 'pickle_protocol']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.save` is not supported."
251 252
                % key
            )
253 254 255 256 257 258 259 260 261 262 263 264

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.use_binary_format = configs.get('use_binary_format', False)
    inner_config.pickle_protocol = configs.get('pickle_protocol', None)

    return inner_config


def _pickle_save(obj, f, protocol):
    # TODO(weixin):add support for BytesIO.
    if not isinstance(protocol, int):
265 266 267 268 269
        raise ValueError(
            "The 'protocol' MUST be `int`, but received {}".format(
                type(protocol)
            )
        )
270 271

    if protocol < 2 or protocol > 4:
272
        raise ValueError(
273 274
            "Expected 1<'protocol'<5, but received protocol={}".format(protocol)
        )
275

276
    def reduce_varbase(self):
277 278 279
        data = self.numpy()
        name = self.name

280
        return (tuple, ((name, data),))
281 282 283 284 285 286

    def reduce_LoDTensor(self):
        data = np.array(self)

        return (eval, ('data', {'data': data}))

287
    def reduce_Layer(self):
288
        raise ValueError(
289 290
            "paddle do not support saving `paddle.nn.Layer` object."
        )
291 292 293 294 295 296 297

    dispatch_table_layer = dict()

    def create_layer_dispatch_table(layer):
        dispatch_table_layer[layer.__class__] = reduce_Layer
        return layer

298 299 300
    _parse_every_object(
        obj, lambda v: isinstance(v, fluid.Layer), create_layer_dispatch_table
    )
301

302 303
    def add_dispatch_table():
        # This is not a good method, because the pickle module has been modified.
304 305
        pickle.dispatch_table[core.VarBase] = reduce_varbase
        pickle.dispatch_table[ParamBase] = reduce_varbase
306 307
        pickle.dispatch_table[core.eager.Tensor] = reduce_varbase
        pickle.dispatch_table[EagerParamBase] = reduce_varbase
308
        pickle.dispatch_table[core.LoDTensor] = reduce_LoDTensor
309
        pickle.dispatch_table.update(dispatch_table_layer)
310 311 312 313 314

    def pop_dispatch_table():
        pickle.dispatch_table.pop(core.VarBase)
        pickle.dispatch_table.pop(core.LoDTensor)
        pickle.dispatch_table.pop(ParamBase)
315 316
        pickle.dispatch_table.pop(core.eager.Tensor)
        pickle.dispatch_table.pop(EagerParamBase)
317 318
        for k in dispatch_table_layer:
            pickle.dispatch_table.pop(k)
319 320 321 322 323 324 325 326 327

    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
    if sys.platform == 'darwin' and sys.version_info.major == 3:
        add_dispatch_table()
        pickle_bytes = pickle.dumps(obj)
        pop_dispatch_table()

        max_bytes = 2**30
        for i in range(0, len(pickle_bytes), max_bytes):
328
            f.write(pickle_bytes[i : i + max_bytes])
329
    else:
T
tianshuo78520a 已提交
330 331
        pickler = pickle.Pickler(f, protocol)
        pickler.dispatch_table = copyreg.dispatch_table.copy()
332

T
tianshuo78520a 已提交
333 334 335
        pickler.dispatch_table[core.VarBase] = reduce_varbase
        pickler.dispatch_table[core.LoDTensor] = reduce_LoDTensor
        pickler.dispatch_table[ParamBase] = reduce_varbase
336 337
        pickler.dispatch_table[core.eager.Tensor] = reduce_varbase
        pickler.dispatch_table[EagerParamBase] = reduce_varbase
T
tianshuo78520a 已提交
338 339
        pickler.dispatch_table.update(dispatch_table_layer)
        pickler.dump(obj)
340 341


342 343 344
def _contain_x(obj, condition_func):
    if isinstance(obj, core.SelectedRows):
        raise NotImplementedError(
345 346
            "`paddle.save` do not support saving 'SelectedRows'."
        )
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

    if condition_func(obj):
        return True
    elif type(obj) in (dict, collections.OrderedDict, list, tuple):
        if type(obj) in (dict, collections.OrderedDict):
            keys = list(obj.keys())
        else:
            keys = range(len(obj))
        flag = False
        for key in keys:
            flag |= _contain_x(obj[key], condition_func)
            if flag:
                return True
        return flag
    else:
362
        return False
363 364 365 366 367 368


def _is_state_dict(obj):
    if isinstance(obj, dict):

        def condition(obj):
369
            return isinstance(
370 371 372 373 374 375 376 377 378 379
                obj,
                (
                    fluid.Layer,
                    Program,
                    core.VarBase,
                    core.eager.Tensor,
                    core.LoDTensor,
                    core.SelectedRows,
                ),
            )
380

381 382
        # If the value of a dict is a core.VarBase/LoDTensor or a dict
        # that does not contain a paddle type(Layer, Program, VarBase, LoDTensor, SelectedRows),
383 384 385 386 387 388
        # the dict is considered to be a state_ dict.
        for key, value in obj.items():
            if isinstance(value, dict):
                for k, v in value.items():
                    if _contain_x(v, condition):
                        return False
389
            elif not isinstance(
390 391
                value, (core.VarBase, core.eager.Tensor, core.LoDTensor)
            ):
392 393 394 395
                return False
        return True

    return False
396 397 398 399 400 401


def _transformed_from_varbase(obj):
    # In paddle2.1 version, VarBase is saved as tuple(tensor.name, tensor.numpy()).
    # When executing paddle.load, use this function to determine whether to restore to VarBase/LoDTensor.
    if isinstance(obj, tuple) and len(obj) == 2:
T
tianshuo78520a 已提交
402
        name_types = str
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
        if isinstance(obj[0], name_types) and isinstance(obj[1], np.ndarray):
            return True
    return False


def _transformed_from_lodtensor(obj):
    # In paddle2.1 version, LoDTensor is saved as np.array(tensor).
    # When executing paddle.load, use this function to determine whether to restore to VarBase/LoDTensor.
    if isinstance(obj, np.ndarray):
        return True
    return False


def _to_LodTensor(ndarray):
    if not isinstance(ndarray, np.ndarray):
        raise TypeError(
419 420 421 422
            'Type of `ndarray` should be numpy.ndarray, but received {}.'.format(
                type(ndarray)
            )
        )
423 424 425 426 427 428 429 430 431
    t = core.LoDTensor()
    place = _current_expected_place()
    t.set(ndarray, place)
    return t


def _tuple_to_tensor(obj, return_numpy):
    if return_numpy:
        return obj[1]
J
Jiabin Yang 已提交
432
    if _non_static_mode():
433 434 435 436 437 438 439 440 441 442 443 444
        t = paddle.to_tensor(obj[1])
        # This function does modify the name of return value.
        # Loading the same variable multiple times may cause the same name.
        t.name = obj[0]
        return t
    else:
        return _to_LodTensor(obj[1])


def _ndarray_to_tensor(obj, return_numpy):
    if return_numpy:
        return obj
J
Jiabin Yang 已提交
445
    if _non_static_mode():
446 447 448 449 450
        return paddle.to_tensor(obj)
    else:
        return _to_LodTensor(obj)


451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
def _lod_tensor2varbase(tensor):
    return_var = _varbase_creator()
    return_var.value().get_tensor().set(tensor, _current_expected_place())
    return return_var


def _parse_every_object(obj, condition_func, convert_func):
    if condition_func(obj):
        return convert_func(obj)
    elif type(obj) in (dict, collections.OrderedDict, list):
        if type(obj) == list:
            keys = range(len(obj))
        else:
            keys = list(obj.keys())
        for key in keys:
            if condition_func(obj[key]):
                obj[key] = convert_func(obj[key])
            else:
469 470 471
                obj[key] = _parse_every_object(
                    obj[key], condition_func, convert_func
                )
472 473 474
        return obj
    elif type(obj) == tuple:
        return tuple(
475 476
            _parse_every_object(list(obj), condition_func, convert_func)
        )
477 478 479
    elif type(obj) == set:
        return set(_parse_every_object(list(obj), condition_func, convert_func))
    else:
480
        if isinstance(obj, Iterable) and not isinstance(
481 482 483
            obj,
            (str, np.ndarray, core.VarBase, core.eager.Tensor, core.LoDTensor),
        ):
484
            raise NotImplementedError(
485 486 487 488
                "The iteratable objects supported are tuple, list, dict, OrderedDict, string. But received {}.".format(
                    type(obj)
                )
            )
489 490 491 492 493
        return obj


def _parse_load_result(obj, return_numpy):
    def is_layer(obj):
J
Jiabin Yang 已提交
494
        return isinstance(obj, fluid.Layer)
495 496 497 498 499 500 501

    def parse_layer(obj):
        temp_dict = _parse_load_result(obj.__dict__, False)
        obj.__dict__.update(temp_dict)
        return obj

    if _contain_x(obj, is_layer):
J
Jiabin Yang 已提交
502
        if not _non_static_mode():
503 504 505 506 507 508 509 510 511 512 513 514
            raise ValueError(
                "Layer can only be loaded in dynamic graph mode, but now in static graph mode."
            )

        _parse_every_object(obj, is_layer, parse_layer)

    def tuple_to_tensor(obj):
        return _tuple_to_tensor(obj, return_numpy=return_numpy)

    def ndarray_to_tensor(obj):
        return _ndarray_to_tensor(obj, return_numpy=return_numpy)

515
    # tuple(name, ndarry) was converted from varbase of paddle2.1,
516 517
    # and all tuple(name, ndarry) are converted to tensor.
    if _contain_x(obj, _transformed_from_varbase):
518 519 520
        return _parse_every_object(
            obj, _transformed_from_varbase, tuple_to_tensor
        )
521
    # If there is no tuple(name, ndary), it is considered to be saved by paddle2.0
522 523
    # or converted from LoDTensor, and all ndarrays are converted to tensor.
    else:
524 525 526
        return _parse_every_object(
            obj, _transformed_from_lodtensor, ndarray_to_tensor
        )
527 528


529 530
def _save_lod_tensor(tensor, file_name):
    if not tensor._is_initialized():
B
Baibaifan 已提交
531 532 533
        raise ValueError(
            "The saved tensor is not initialized. If you used group sharded, please use save_group_sharded_model firstly."
        )
534 535 536 537 538 539 540 541 542 543 544 545 546
    if _is_file_path(file_name):
        _seek = core.save_lod_tensor(tensor, file_name)
        # '_seek' is the end position of this tensor in the file.

    elif _is_memory_buffer(file_name):
        tensor_bytes = core.save_lod_tensor_to_memory(tensor)

        with _open_file_buffer(file_name, 'wb') as f:
            f.write(tensor_bytes)
            _seek = f.tell()

    else:
        raise NotImplementedError(
547 548 549 550
            'Only supports saving objects to file or BytesIO, but received {}'.format(
                type(file_name)
            )
        )
551 552 553 554 555
    return _seek


def _load_lod_tensor(file_name):
    temp_t = paddle.fluid.core.LoDTensor()
556 557 558 559 560 561 562 563 564 565 566 567
    if _is_file_path(file_name):
        # '_seek' is the end position of this tensor in the file.
        _seek = paddle.fluid.core.load_lod_tensor(temp_t, file_name)

    elif _is_memory_buffer(file_name):
        with _open_file_buffer(file_name, 'rb') as f:
            tensor_bytes = f.read()
            paddle.fluid.core.load_lod_tensor_from_memory(temp_t, tensor_bytes)
            _seek = f.tell()

    else:
        raise NotImplementedError(
568 569 570 571
            'Only supports load objects from file or BytesIO, but received {}'.format(
                type(file_name)
            )
        )
572

573 574 575 576 577 578
    return temp_t, _seek


def _save_selected_rows(selected_rows, file_name):
    if not selected_rows.get_tensor()._is_initialized():
        raise ValueError("The saved tensor is not initialized.")
579 580 581 582 583 584 585 586 587 588 589
    if _is_file_path(file_name):
        # '_seek' is the end position of this SelectedRows in the file.
        _seek = core.save_selected_rows(selected_rows, file_name)

    elif _is_memory_buffer(file_name):
        selected_rows_bytes = core.save_selected_rows_to_memory(selected_rows)
        with _open_file_buffer(file_name, 'wb') as f:
            f.write(selected_rows_bytes)
            _seek = f.tell()
    else:
        raise NotImplementedError(
590 591 592 593
            'Only supports saving objects to file or BytesIO, but received {}'.format(
                type(file_name)
            )
        )
594 595 596 597 598
    return _seek


def _load_selected_rows(file_name):
    temp_sr = core.SelectedRows()
599 600 601 602 603 604 605 606
    if _is_file_path(file_name):
        # '_seek' is the end position of this SelectedRows in the file.
        _seek = core.load_selected_rows(temp_sr, file_name)

    elif _is_memory_buffer(file_name):
        with _open_file_buffer(file_name, 'rb') as f:
            selected_rows_bytes = f.read()
            paddle.fluid.core.load_selected_rows_from_memory(
607 608
                temp_sr, selected_rows_bytes
            )
609 610 611 612
        _seek = f.tell()

    else:
        raise NotImplementedError(
613 614 615 616
            'Only supports load objects from file or BytesIO, but received {}'.format(
                type(file_name)
            )
        )
617

618 619 620 621 622 623 624 625
    return temp_sr, _seek


def _save_binary_var(obj, path):
    if isinstance(obj, core.LoDTensor):
        _save_lod_tensor(obj, path)
    elif isinstance(obj, core.SelectedRows):
        _save_selected_rows(obj, path)
626
    elif isinstance(obj, (core.VarBase, core.eager.Tensor)):
627
        _save_lod_tensor(obj.value().get_tensor(), path)
628 629 630
    else:
        # Since the concept of 'Tensor' is only exposed to users, the error message can only contain tensor instead of 'LoDTensor' or 'SelectedRows'
        raise NotImplementedError(
631 632 633 634
            "When use_binary_format = True, `paddle.save`  expected Tensor, but received {}.".format(
                type(obj)
            )
        )
635 636


637
def save(obj, path, protocol=4, **configs):
638 639
    '''
    Save an object to the specified path.
640

641
    Note:
642
        Now supports saving ``state_dict`` of Layer/Optimizer, Tensor and nested structure containing Tensor, Program.
643

644
    Note:
645 646 647
        Different from ``paddle.jit.save``, since the save result of ``paddle.save`` is a single file,
        there is no need to distinguish multiple saved files by adding a suffix. The argument ``path``
        of ``paddle.save`` will be directly used as the saved file name instead of a prefix.
648
        In order to unify the saved file name format, we recommend using the paddle standard suffix:
649 650
        1. for ``Layer.state_dict`` , recommend to use ``.pdparams`` ;
        2. for ``Optimizer.state_dict`` , recommend to use ``.pdopt`` .
651
        For specific examples, please refer to API code examples.
652

653 654
    Args:
        obj(Object) : The object to be saved.
655 656
        path(str|BytesIO) : The path/buffer of the object to be saved.
          If saved in the current directory, the input path string will be used as the file name.
657
        protocol(int, optional): The protocol version of pickle module must be greater than 1 and less than 5.
658
                                 Default: 4
659
        **configs(dict, optional): optional keyword arguments. The following options are currently supported:
660
          use_binary_format(bool): When the saved object is static graph variable, you can specify ``use_binary_for_var``.
661 662
          If True, save the file in the c++ binary format when saving a single static graph variable; otherwise, save it in pickle format.
          Default: False
663 664 665 666 667 668

    Returns:
        None

    Examples:
        .. code-block:: python
669
            :name: code-example-1
670

671
            # example 1: dynamic graph
672 673 674
            import paddle
            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
675 676

            # save state_dict of emb
677
            paddle.save(layer_state_dict, "emb.pdparams")
678 679

            scheduler = paddle.optimizer.lr.NoamDecay(
680 681 682 683 684
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
685 686

            # save state_dict of optimizer
687
            paddle.save(opt_state_dict, "adam.pdopt")
688 689 690
            # save weight of emb
            paddle.save(emb.weight, "emb.weight.pdtensor")

691 692 693
        .. code-block:: python
            :name: code-example-2

W
WeiXin 已提交
694
            # example 2: Save multiple state_dict at the same time
695
            import paddle
W
WeiXin 已提交
696 697 698 699 700 701 702 703 704
            from paddle import nn
            from paddle.optimizer import Adam

            layer = paddle.nn.Linear(3, 4)
            adam = Adam(learning_rate=0.001, parameters=layer.parameters())
            obj = {'model': layer.state_dict(), 'opt': adam.state_dict(), 'epoch': 100}
            path = 'example/model.pdparams'
            paddle.save(obj, path)

705 706
        .. code-block:: python
            :name: code-example-3
W
WeiXin 已提交
707 708

            # example 3: static graph
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
            import paddle
            import paddle.static as static

            paddle.enable_static()

            # create network
            x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')
            z = paddle.static.nn.fc(x, 10)

            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()
            for var in prog.list_vars():
                if list(var.shape) == [224, 10]:
W
WeiXin 已提交
724
                    tensor = var.get_value()
725 726 727 728 729 730 731 732 733
                    break

            # save/load tensor
            path_tensor = 'temp/tensor.pdtensor'
            paddle.save(tensor, path_tensor)

            # save/load state_dict
            path_state_dict = 'temp/model.pdparams'
            paddle.save(prog.state_dict("param"), path_tensor)
W
WeiXin 已提交
734

735 736 737
        .. code-block:: python
            :name: code-example-4

W
WeiXin 已提交
738 739 740 741 742 743 744 745 746 747 748
            # example 4: save program
            import paddle

            paddle.enable_static()

            data = paddle.static.data(
                name='x_static_save', shape=(None, 224), dtype='float32')
            y_static = z = paddle.static.nn.fc(data, 10)
            main_program = paddle.static.default_main_program()
            path = "example/main_program.pdmodel"
            paddle.save(main_program, path)
749

750 751
        .. code-block:: python
            :name: code-example-5
752 753 754 755 756 757 758 759 760 761 762 763 764

            # example 5: save object to memory
            from io import BytesIO
            import paddle
            from paddle.nn import Linear
            paddle.disable_static()

            linear = Linear(5, 10)
            state_dict = linear.state_dict()
            byio = BytesIO()
            paddle.save(state_dict, byio)
            tensor = paddle.randn([2, 3], dtype='float32')
            paddle.save(tensor, byio)
765

766 767 768 769 770 771 772 773
    '''
    if _is_file_path(path):
        # 1. input check
        filename = os.path.basename(path)
        if filename == "":
            raise ValueError(
                "The input path MUST be format of dirname/filename "
                "[dirname\\filename in Windows system], but received "
774 775
                "filename is empty string."
            )
776 777 778 779

        # 2. save object
        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
780
            os.makedirs(dirname, exist_ok=True)
781 782
    elif not _is_memory_buffer(path):
        raise ValueError(
783 784 785 786
            "only supports saving objects to file and `BytesIO`, but got {}".format(
                type(path)
            )
        )
787 788 789 790 791

    config = _parse_save_config(configs)

    if not isinstance(config.use_binary_format, bool):
        raise TypeError(
792 793 794 795
            "Type of `use_binary_format` should be bool, but received {}.".format(
                type(config.use_binary_format)
            )
        )
796

797 798
    if config.use_binary_format:
        _save_binary_var(obj, path)
799
    else:
800 801 802 803 804 805
        # `protocol` need to be used, `pickle_protocol` is a deprecated arg.
        if config.pickle_protocol is not None:
            protocol = config.pickle_protocol
            warnings.warn(
                "'pickle_protocol' is a deprecated argument. Please use 'protocol' instead."
            )
806

807 808
        if isinstance(obj, Program):
            obj.desc.flush()
809
            with _open_file_buffer(path, "wb") as f:
810
                f.write(obj.desc.serialize_to_string())
811 812

        elif _is_state_dict(obj):
J
Jiabin Yang 已提交
813
            if _non_static_mode():
814 815 816 817
                _legacy_save(obj, path, protocol)
            else:
                _legacy_static_save(obj, path, protocol)
        else:
818
            with _open_file_buffer(path, 'wb') as f:
819
                _pickle_save(obj, f, protocol)
820

821 822

def _legacy_save(obj, path, protocol=2):
823 824 825 826
    # 1. input check
    if not isinstance(obj, dict):
        raise NotImplementedError(
            "Now only supports save state_dict of Layer or Optimizer, "
827 828
            "expect dict, but received %s." % type(obj)
        )
829 830 831 832

    if len(obj) == 0:
        warnings.warn("The input state dict is empty, no need to save.")

833
    if not isinstance(protocol, int):
834 835 836 837 838
        raise ValueError(
            "The 'protocol' MUST be `int`, but received {}".format(
                type(protocol)
            )
        )
W
WeiXin 已提交
839

840
    if protocol < 2 or protocol > 4:
841
        raise ValueError(
842 843
            "Expected 1<'protocol'<5, but received protocol={}".format(protocol)
        )
W
WeiXin 已提交
844

845 846 847 848 849 850
    if _is_file_path(path):
        filename = os.path.basename(path)
        if filename == "":
            raise ValueError(
                "The input path MUST be format of dirname/filename "
                "[dirname\\filename in Windows system], but received "
851 852
                "filename is empty string."
            )
853 854 855
        # 2. save object
        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
856
            os.makedirs(dirname, exist_ok=True)
857

W
WeiXin 已提交
858 859 860
    if isinstance(obj, dict):
        saved_obj = _build_saved_state_dict(obj)

861
    saved_obj = _unpack_saved_dict(saved_obj, protocol)
862

863
    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
864 865 866 867 868
    if (
        _is_file_path(path)
        and sys.platform == 'darwin'
        and sys.version_info.major == 3
    ):
869
        pickle_bytes = pickle.dumps(saved_obj, protocol=protocol)
870 871 872
        with open(path, 'wb') as f:
            max_bytes = 2**30
            for i in range(0, len(pickle_bytes), max_bytes):
873
                f.write(pickle_bytes[i : i + max_bytes])
874
    else:
875
        with _open_file_buffer(path, 'wb') as f:
876
            pickle.dump(saved_obj, f, protocol=protocol)
877 878


879
def load(path, **configs):
880 881 882
    '''
    Load an object can be used in paddle from specified path.

883
    Note:
884
        Now supports loading ``state_dict`` of Layer/Optimizer, Tensor and nested structure containing Tensor, Program.
885

886
    Note:
887 888 889
        In order to use the model parameters saved by paddle more efficiently,
        ``paddle.load`` supports loading ``state_dict`` of Layer from the result of
        other save APIs except ``paddle.save`` , but the argument ``path`` format is
890
        different:
891 892 893 894 895 896
        1. loading from ``paddle.static.save`` or ``paddle.Model().save(training=True)`` ,
        ``path`` needs to be a complete file name, such as ``model.pdparams`` or
        ``model.pdopt`` ;
        2. loading from ``paddle.jit.save`` or ``paddle.static.save_inference_model``
        or ``paddle.Model().save(training=False)`` , ``path`` need to be a file prefix,
        such as ``model/mnist``, and ``paddle.load`` will get information from
897
        ``mnist.pdmodel`` and ``mnist.pdiparams`` ;
898 899
        3. loading from paddle 1.x APIs ``paddle.fluid.io.save_inference_model`` or
        ``paddle.fluid.io.save_params/save_persistables`` , ``path`` need to be a
900 901
        directory, such as ``model`` and model is a directory.

902
    Note:
903
        If you load ``state_dict`` from the saved result of static graph mode API such as
904 905 906
        ``paddle.static.save`` or ``paddle.static.save_inference_model`` ,
        the structured variable name in dynamic mode will cannot be restored.
        You need to set the argument ``use_structured_name=False`` when using
907
        ``Layer.set_state_dict`` later.
908 909

    Args:
910 911
        path(str|BytesIO) : The path/buffer to load the target object. Generally, the path is the target
            file path. When loading state_dict from the saved result of the API used to save
912
            the inference model, the path may be a file prefix or directory.
913 914
        **configs (dict, optional): other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
915 916
            DO NOT use them. Default None.
            The following options are currently supported:
917 918 919 920 921 922
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
            by default.
            (3) return_numpy(bool): If specified as True, return tensor as numpy.ndarray, otherwise return tensor as paddle.Tensor.
923
            Default False.
924 925 926 927 928 929

    Returns:
        Object(Object): a target object can be used in paddle

    Examples:
        .. code-block:: python
930
            :name: code-example-1
931

932 933
            # example 1: dynamic graph
            import paddle
934 935
            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
936 937

            # save state_dict of emb
938
            paddle.save(layer_state_dict, "emb.pdparams")
939 940

            scheduler = paddle.optimizer.lr.NoamDecay(
941 942 943 944 945
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
946 947

            # save state_dict of optimizer
948
            paddle.save(opt_state_dict, "adam.pdopt")
949 950
            # save weight of emb
            paddle.save(emb.weight, "emb.weight.pdtensor")
951

952
            # load state_dict of emb
953
            load_layer_state_dict = paddle.load("emb.pdparams")
954
            # load state_dict of optimizer
955
            load_opt_state_dict = paddle.load("adam.pdopt")
956 957 958
            # load weight of emb
            load_weight = paddle.load("emb.weight.pdtensor")

959 960
        .. code-block:: python
            :name: code-example-2
961

W
WeiXin 已提交
962
            # example 2: Load multiple state_dict at the same time
963
            import paddle
W
WeiXin 已提交
964 965 966 967 968 969 970 971 972 973
            from paddle import nn
            from paddle.optimizer import Adam

            layer = paddle.nn.Linear(3, 4)
            adam = Adam(learning_rate=0.001, parameters=layer.parameters())
            obj = {'model': layer.state_dict(), 'opt': adam.state_dict(), 'epoch': 100}
            path = 'example/model.pdparams'
            paddle.save(obj, path)
            obj_load = paddle.load(path)

974 975
        .. code-block:: python
            :name: code-example-3
W
WeiXin 已提交
976 977

            # example 3: static graph
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
            import paddle
            import paddle.static as static

            paddle.enable_static()

            # create network
            x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')
            z = paddle.static.nn.fc(x, 10)

            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()
            for var in prog.list_vars():
                if list(var.shape) == [224, 10]:
W
WeiXin 已提交
993
                    tensor = var.get_value()
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
                    break

            # save/load tensor
            path_tensor = 'temp/tensor.pdtensor'
            paddle.save(tensor, path_tensor)
            load_tensor = paddle.load(path_tensor)

            # save/load state_dict
            path_state_dict = 'temp/model.pdparams'
            paddle.save(prog.state_dict("param"), path_tensor)
            load_state_dict = paddle.load(path_tensor)

1006 1007
        .. code-block:: python
            :name: code-example-4
W
WeiXin 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

            # example 4: load program
            import paddle

            paddle.enable_static()

            data = paddle.static.data(
                name='x_static_save', shape=(None, 224), dtype='float32')
            y_static = z = paddle.static.nn.fc(data, 10)
            main_program = paddle.static.default_main_program()
            path = "example/main_program.pdmodel"
            paddle.save(main_program, path)
            load_main = paddle.load(path)
            print(load_main)

1023 1024
        .. code-block:: python
            :name: code-example-5
W
WeiXin 已提交
1025

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
            # example 5: save object to memory
            from io import BytesIO
            import paddle
            from paddle.nn import Linear
            paddle.disable_static()

            linear = Linear(5, 10)
            state_dict = linear.state_dict()
            byio = BytesIO()
            paddle.save(state_dict, byio)
            tensor = paddle.randn([2, 3], dtype='float32')
            paddle.save(tensor, byio)
            byio.seek(0)
            # load state_dict
            dict_load = paddle.load(byio)

1042
    '''
1043

1044
    if _is_memory_buffer(path) or os.path.isfile(path):
1045
        config = _parse_load_config(configs)
T
tianshuo78520a 已提交
1046
        exception_type = pickle.UnpicklingError
W
WeiXin 已提交
1047
        try:
1048
            with _open_file_buffer(path, 'rb') as f:
W
WeiXin 已提交
1049
                # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
1050 1051 1052 1053 1054
                if (
                    _is_file_path(path)
                    and sys.platform == 'darwin'
                    and sys.version_info.major == 3
                ):
W
WeiXin 已提交
1055 1056
                    load_result = _pickle_loads_mac(path, f)
                else:
T
tianshuo78520a 已提交
1057
                    load_result = pickle.load(f, encoding='latin1')
1058

W
WeiXin 已提交
1059 1060
                # TODO(weixin):If `obj` is any object, the judgment condition should be more precise.
                if isinstance(load_result, dict):
1061
                    load_result = _pack_loaded_dict(load_result)
W
WeiXin 已提交
1062 1063 1064 1065
                    # paddle2.0: paddle.save/load
                    if "StructuredToParameterName@@" in load_result:

                        for key in load_result["StructuredToParameterName@@"]:
S
Steffy-zxf 已提交
1066 1067
                            if isinstance(load_result[key], np.ndarray):
                                load_result[key] = _ndarray_to_tensor(
1068 1069
                                    load_result[key], config.return_numpy
                                )
W
WeiXin 已提交
1070

1071 1072 1073 1074
                        if (
                            not config.keep_name_table
                            and "StructuredToParameterName@@" in load_result
                        ):
W
WeiXin 已提交
1075 1076 1077
                            del load_result["StructuredToParameterName@@"]
                    else:
                        # paddle2.1 static.save/load
1078
                        load_result = _parse_load_result(
1079 1080
                            load_result, config.return_numpy
                        )
1081 1082

                else:
1083 1084 1085
                    load_result = _parse_load_result(
                        load_result, config.return_numpy
                    )
1086 1087 1088 1089 1090 1091 1092 1093

        except exception_type as msg_pickle:
            try:
                tensor, _ = _load_selected_rows(path)
                return tensor
            except:
                try:
                    tensor, _ = _load_lod_tensor(path)
1094 1095 1096
                    if config.return_numpy:
                        return np.array(tensor)
                    else:
J
Jiabin Yang 已提交
1097
                        if _non_static_mode():
1098 1099
                            return _lod_tensor2varbase(tensor)
                        return tensor
1100 1101
                except:
                    try:
1102
                        with _open_file_buffer(path, "rb") as f:
1103 1104
                            program_desc_str = f.read()
                            program = Program.parse_from_string(
1105 1106
                                program_desc_str
                            )
1107 1108 1109 1110
                            return program
                    except:
                        raise ValueError(
                            "`paddle.load` can not parse the file:{}.".format(
1111 1112 1113
                                path
                            )
                        )
1114 1115 1116 1117 1118 1119 1120 1121

    else:
        load_result = _legacy_load(path, **configs)

    return load_result


def _legacy_load(path, **configs):
1122
    load_result = None
1123 1124
    config = _parse_load_config(configs)

1125
    if os.path.isfile(path) or _is_memory_buffer(path):
1126
        # we think path is file means this file is created by paddle.save
1127
        with _open_file_buffer(path, 'rb') as f:
T
tianshuo78520a 已提交
1128
            load_result = pickle.load(f, encoding='latin1')
1129
        load_result = _pack_loaded_dict(load_result)
1130 1131 1132 1133
        if (
            not config.keep_name_table
            and "StructuredToParameterName@@" in load_result
        ):
1134
            del load_result["StructuredToParameterName@@"]
1135 1136 1137
    else:
        # file prefix and directory are compatible cases
        model_path, config = _build_load_path_and_config(path, config)
1138 1139 1140 1141 1142
        # check whether model file exists
        if config.model_filename is None:
            model_filename = '__model__'
        else:
            model_filename = config.model_filename
1143
        model_file_path = os.path.join(model_path, model_filename)
1144 1145 1146 1147

        if os.path.exists(model_file_path):
            # Load state dict by `jit.save/io.save_inference_model` save format
            # NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
1148 1149 1150
            # The model saved by `save_inference_model` does not completely correspond to
            # the information required by the `state_dict` under the dygraph.
            # `save_inference_model` not save structured name, we need to remind
1151
            # the user to configure the `use_structured_name` argument when `set_state_dict`
1152 1153
            # NOTE(chenweihang): `jit.save` doesn't save optimizer state
            load_result = _load_state_dict_from_save_inference_model(
1154 1155
                model_path, config
            )
1156 1157
        else:
            # load state dict by `io.save_params/persistables` save format
1158
            # TODO(chenweihang): [ Now only supports loading parameters separately ]
1159
            # If users save all parameters as one file, the [ variable.name -> variable ]
1160
            # mapping info will lost, so users need to give variable list, but users build
1161 1162
            # variable list in dygraph mode is difficult, we recommend users to use
            # paddle.static.load_program_state in this case
1163
            load_result = _load_state_dict_from_save_params(model_path)
1164 1165

    return load_result