conv_transpose_kernel.cc 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/conv_transpose_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/conv_util.h"
20
#include "paddle/phi/kernels/xpu/xpu_api_wrapper.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

namespace phi {

// target_len == 2 || target_len == 4
inline std::vector<int> vector_extend(const std::vector<int>& src,
                                      int target_len) {
  if (target_len == 2 && src.size() == 1) {
    return {src[0], src[0]};
  }
  if (target_len == 4 && src.size() == 1) {
    return {src[0], src[0], src[0], src[0]};
  }
  if (target_len == 4 && src.size() == 2) {
    return {src[0], src[0], src[1], src[1]};
  }
  return src;
}

template <typename T, typename Context>
void Conv2dTransposeKernel(const Context& ctx,
                           const DenseTensor& x,
                           const DenseTensor& filter,
                           const std::vector<int>& strides,
                           const std::vector<int>& paddings,
                           const std::vector<int>& output_padding,
46
                           const IntArray& output_size,
47 48 49 50 51
                           const std::string& padding_algorithm,
                           int groups,
                           const std::vector<int>& dilations,
                           const std::string& data_format,
                           DenseTensor* out) {
52 53
  using XPUT = typename XPUTypeTrait<T>::Type;

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  // The filter will be reshaped in the calculations,
  // so here use an assignment operation,
  // that avoids modifying the variable in the Scope.
  DenseTensor filter_ = filter;

  ctx.template Alloc<T>(out);

  PADDLE_ENFORCE_EQ(
      data_format == "NHWC" || data_format == "NDHWC",
      false,
      errors::InvalidArgument(
          ("XPU do support data_format is NCHW in conv_transpose op.")));

  DDim in_data_dims = slice_ddim(x.dims(), 2, x.dims().size());
  DDim filter_data_dims = slice_ddim(filter_.dims(), 2, filter_.dims().size());
  std::vector<int> ksize = vectorize<int>(filter_data_dims);

  std::vector<int> paddings_ = paddings;
  std::vector<int> dilations_ = dilations;
  UpdatePaddingAndDilation(
      &paddings_, &dilations_, padding_algorithm, in_data_dims, strides, ksize);

  const int batch_size = static_cast<int>(x.dims()[0]);
  const int img_yc = static_cast<int>(x.dims()[1]);
  const int img_xc = static_cast<int>(out->dims()[1]);
  const int img_xh = static_cast<int>(out->dims()[2]);
  const int img_xw = static_cast<int>(out->dims()[3]);

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  int fccal_type = FCCalcType<XPUT>();
  if (fccal_type == XPUFCCalcType::FC_INT32) {
    int r = xpu::conv2d_transpose_v2<float, float, float, int32_t>(
        ctx.x_context(),
        x.data<float>(),
        filter_.data<float>(),
        out->data<float>(),
        batch_size,
        img_yc,
        img_xh,
        img_xw,
        img_xc,
        ksize,
        strides,
        paddings_,
        dilations_,
        groups,
        nullptr,
        nullptr,
        nullptr,
        true);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "conv2d_transpose_v2");
  } else if (fccal_type == XPUFCCalcType::FC_FLOAT) {
    int r = xpu::conv2d_transpose_v2<float, float, float, float>(
        ctx.x_context(),
        x.data<float>(),
        filter_.data<float>(),
        out->data<float>(),
        batch_size,
        img_yc,
        img_xh,
        img_xw,
        img_xc,
        ksize,
        strides,
        paddings_,
        dilations_,
        groups,
        nullptr,
        nullptr,
        nullptr,
        true);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "conv2d_transpose_v2");
  } else {
    int r = xpu::conv2d_transpose_v2<float, float, float, int16_t>(
        ctx.x_context(),
        x.data<float>(),
        filter_.data<float>(),
        out->data<float>(),
        batch_size,
        img_yc,
        img_xh,
        img_xw,
        img_xc,
        ksize,
        strides,
        paddings_,
        dilations_,
        groups,
        nullptr,
        nullptr,
        nullptr,
        true);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "conv2d_transpose_v2");
  }
147 148 149 150 151 152
}

}  // namespace phi

PD_REGISTER_KERNEL(
    conv2d_transpose, XPU, ALL_LAYOUT, phi::Conv2dTransposeKernel, float) {}