Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1f1a7835
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1f1a7835
编写于
8月 26, 2022
作者:
R
Ruibiao Chen
提交者:
GitHub
8月 26, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Move conv2d_transpose XPU kernel to PHI, test=kunlun (#45419)
上级
6ab80b64
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
126 addition
and
103 deletion
+126
-103
paddle/fluid/operators/conv_transpose_op_xpu.cc
paddle/fluid/operators/conv_transpose_op_xpu.cc
+0
-103
paddle/phi/kernels/xpu/conv_transpose_kernel.cc
paddle/phi/kernels/xpu/conv_transpose_kernel.cc
+126
-0
未找到文件。
paddle/fluid/operators/conv_transpose_op_xpu.cc
浏览文件 @
1f1a7835
...
...
@@ -24,106 +24,6 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
// target_len == 2 || target_len == 4
inline
std
::
vector
<
int
>
vector_extend
(
const
std
::
vector
<
int
>&
src
,
int
target_len
)
{
if
(
target_len
==
2
&&
src
.
size
()
==
1
)
{
return
{
src
[
0
],
src
[
0
]};
}
if
(
target_len
==
4
&&
src
.
size
()
==
1
)
{
return
{
src
[
0
],
src
[
0
],
src
[
0
],
src
[
0
]};
}
if
(
target_len
==
4
&&
src
.
size
()
==
2
)
{
return
{
src
[
0
],
src
[
0
],
src
[
1
],
src
[
1
]};
}
return
src
;
}
template
<
typename
DeviceContext
,
typename
T
>
class
Conv2DTransposeXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
// The filter will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
groups
=
context
.
Attr
<
int
>
(
"groups"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
const
std
::
string
data_format
=
context
.
Attr
<
std
::
string
>
(
"data_format"
);
const
std
::
string
padding_algorithm
=
context
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
PADDLE_ENFORCE_EQ
(
data_format
==
"NHWC"
||
data_format
==
"NDHWC"
,
false
,
platform
::
errors
::
InvalidArgument
(
(
"XPU do support data_format is NCHW in conv_transpose op."
)));
framework
::
DDim
in_data_dims
=
phi
::
slice_ddim
(
input
->
dims
(),
2
,
input
->
dims
().
size
());
framework
::
DDim
filter_data_dims
=
phi
::
slice_ddim
(
filter
.
dims
(),
2
,
filter
.
dims
().
size
());
std
::
vector
<
int
>
ksize
=
phi
::
vectorize
<
int
>
(
filter_data_dims
);
phi
::
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
in_data_dims
,
strides
,
ksize
);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
img_yc
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
img_yh
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
img_yw
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
img_xc
=
static_cast
<
int
>
(
output
->
dims
()[
1
]);
const
int
img_xh
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
const
int
img_xw
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
{
std
::
vector
<
int
>
ksize_check
=
vector_extend
(
ksize
,
2
);
std
::
vector
<
int
>
stride_check
=
vector_extend
(
strides
,
2
);
std
::
vector
<
int
>
pad_check
=
vector_extend
(
paddings
,
4
);
std
::
vector
<
int
>
dilation_check
=
vector_extend
(
dilations
,
2
);
int
xh_check
=
(
img_yh
-
1
)
*
stride_check
[
0
]
-
pad_check
[
0
]
-
pad_check
[
1
]
+
(
dilation_check
[
0
]
*
(
ksize_check
[
0
]
-
1
)
+
1
);
int
xw_check
=
(
img_yw
-
1
)
*
stride_check
[
1
]
-
pad_check
[
2
]
-
pad_check
[
3
]
+
(
dilation_check
[
1
]
*
(
ksize_check
[
1
]
-
1
)
+
1
);
PADDLE_ENFORCE_EQ
(
xh_check
==
img_xh
&&
xw_check
==
img_xw
,
true
,
platform
::
errors
::
InvalidArgument
(
(
"XPU output size check error in conv_transpose op."
)));
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
conv2d_transpose
<
float
,
float
,
float
,
int16_t
>
(
dev_ctx
.
x_context
(),
input
->
data
<
float
>
(),
filter
.
data
<
float
>
(),
output
->
data
<
float
>
(),
batch_size
,
img_yc
,
img_yh
,
img_yw
,
img_xc
,
ksize
,
strides
,
paddings
,
dilations
,
groups
,
nullptr
,
nullptr
,
nullptr
,
true
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"conv2d_transpose"
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
Conv2DTransposeGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -209,9 +109,6 @@ class Conv2DTransposeGradXPUKernel : public framework::OpKernel<T> {
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
conv2d_transpose
,
ops
::
Conv2DTransposeXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
conv2d_transpose_grad
,
ops
::
Conv2DTransposeGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
...
...
paddle/phi/kernels/xpu/conv_transpose_kernel.cc
0 → 100644
浏览文件 @
1f1a7835
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/conv_transpose_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/conv_util.h"
namespace
phi
{
// target_len == 2 || target_len == 4
inline
std
::
vector
<
int
>
vector_extend
(
const
std
::
vector
<
int
>&
src
,
int
target_len
)
{
if
(
target_len
==
2
&&
src
.
size
()
==
1
)
{
return
{
src
[
0
],
src
[
0
]};
}
if
(
target_len
==
4
&&
src
.
size
()
==
1
)
{
return
{
src
[
0
],
src
[
0
],
src
[
0
],
src
[
0
]};
}
if
(
target_len
==
4
&&
src
.
size
()
==
2
)
{
return
{
src
[
0
],
src
[
0
],
src
[
1
],
src
[
1
]};
}
return
src
;
}
template
<
typename
T
,
typename
Context
>
void
Conv2dTransposeKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
filter
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
output_padding
,
const
std
::
vector
<
int
>&
output_size
,
const
std
::
string
&
padding_algorithm
,
int
groups
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
string
&
data_format
,
DenseTensor
*
out
)
{
// The filter will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
DenseTensor
filter_
=
filter
;
ctx
.
template
Alloc
<
T
>(
out
);
PADDLE_ENFORCE_EQ
(
data_format
==
"NHWC"
||
data_format
==
"NDHWC"
,
false
,
errors
::
InvalidArgument
(
(
"XPU do support data_format is NCHW in conv_transpose op."
)));
DDim
in_data_dims
=
slice_ddim
(
x
.
dims
(),
2
,
x
.
dims
().
size
());
DDim
filter_data_dims
=
slice_ddim
(
filter_
.
dims
(),
2
,
filter_
.
dims
().
size
());
std
::
vector
<
int
>
ksize
=
vectorize
<
int
>
(
filter_data_dims
);
std
::
vector
<
int
>
paddings_
=
paddings
;
std
::
vector
<
int
>
dilations_
=
dilations
;
UpdatePaddingAndDilation
(
&
paddings_
,
&
dilations_
,
padding_algorithm
,
in_data_dims
,
strides
,
ksize
);
const
int
batch_size
=
static_cast
<
int
>
(
x
.
dims
()[
0
]);
const
int
img_yc
=
static_cast
<
int
>
(
x
.
dims
()[
1
]);
const
int
img_yh
=
static_cast
<
int
>
(
x
.
dims
()[
2
]);
const
int
img_yw
=
static_cast
<
int
>
(
x
.
dims
()[
3
]);
const
int
img_xc
=
static_cast
<
int
>
(
out
->
dims
()[
1
]);
const
int
img_xh
=
static_cast
<
int
>
(
out
->
dims
()[
2
]);
const
int
img_xw
=
static_cast
<
int
>
(
out
->
dims
()[
3
]);
{
std
::
vector
<
int
>
ksize_check
=
vector_extend
(
ksize
,
2
);
std
::
vector
<
int
>
stride_check
=
vector_extend
(
strides
,
2
);
std
::
vector
<
int
>
pad_check
=
vector_extend
(
paddings_
,
4
);
std
::
vector
<
int
>
dilation_check
=
vector_extend
(
dilations_
,
2
);
int
xh_check
=
(
img_yh
-
1
)
*
stride_check
[
0
]
-
pad_check
[
0
]
-
pad_check
[
1
]
+
(
dilation_check
[
0
]
*
(
ksize_check
[
0
]
-
1
)
+
1
);
int
xw_check
=
(
img_yw
-
1
)
*
stride_check
[
1
]
-
pad_check
[
2
]
-
pad_check
[
3
]
+
(
dilation_check
[
1
]
*
(
ksize_check
[
1
]
-
1
)
+
1
);
PADDLE_ENFORCE_EQ
(
xh_check
==
img_xh
&&
xw_check
==
img_xw
,
true
,
errors
::
InvalidArgument
(
(
"XPU output size check error in conv_transpose op."
)));
}
int
r
=
xpu
::
conv2d_transpose
<
float
,
float
,
float
,
int16_t
>
(
ctx
.
x_context
(),
x
.
data
<
float
>
(),
filter_
.
data
<
float
>
(),
out
->
data
<
float
>
(),
batch_size
,
img_yc
,
img_yh
,
img_yw
,
img_xc
,
ksize
,
strides
,
paddings_
,
dilations_
,
groups
,
nullptr
,
nullptr
,
nullptr
,
true
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"conv2d_transpose"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
conv2d_transpose
,
XPU
,
ALL_LAYOUT
,
phi
::
Conv2dTransposeKernel
,
float
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录