multi_devices_graph_pass.cc 37.0 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduo 已提交
14
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
C
chengduoZH 已提交
15
#include <algorithm>
Y
Yancey1989 已提交
16
#include <fstream>
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19 20
#include <unordered_map>
#include <unordered_set>
C
chengduoZH 已提交
21
#include <utility>
C
chengduoZH 已提交
22
#include <vector>
23
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
24
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
25
#include "paddle/fluid/framework/details/computation_op_handle.h"
26
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
C
chengduoZH 已提交
27
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
28
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
29
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
better  
Xin Pan 已提交
30
#include "paddle/fluid/framework/ir/graph_helper.h"
X
Xin Pan 已提交
31
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
32
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
33
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35 36 37
namespace paddle {
namespace framework {
namespace details {
X
Xin Pan 已提交
38

X
Xin Pan 已提交
39
namespace {
Y
Yancey1989 已提交
40 41 42 43 44
// TODO(panyx0718): Clean this up as well.
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef std::vector<OpHandleBase *> GraphOps;
const char kGraphOps[] = "ops";
X
Xin Pan 已提交
45

C
chengduo 已提交
46 47 48 49 50 51
bool OpHaveRole(const ir::Node &node, const framework::OpRole &role) {
  return boost::get<int>(
             node.Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
         static_cast<int>(role);
}

X
Xin Pan 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
void PolishGraphToSupportDataHazards(ir::Graph *graph) {
  for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
    for (auto &name_pair : var_map) {
      if (name_pair.second.size() <= 1) {
        continue;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        OpHandleBase *write_op = (*it_new)->GeneratedOp();
        const auto &read_ops = (*it_old)->PendingOps();

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
          bool has_dep = false;
          for (auto *r_out : read_op->Outputs()) {
            for (auto *w_in : write_op->Inputs()) {
              if (r_out->Node() == w_in->Node()) {
                has_dep = true;
                break;
              }
            }
          }
          if (has_dep) continue;

          auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
          read_op->AddOutput(dep_var);
          write_op->AddInput(dep_var);
          graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        }
      }
    }
  }
}

VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
                                      const platform::Place &place,
                                      size_t place_offset) {
  auto &var_holders = graph->Get<GraphVars>(kGraphVars)[place_offset];
  auto &var_holder = var_holders[node->Name()];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    if (node->Var()) {
      var = new VarHandle(graph->CreateVarNode(node->Var()), 0, place_offset,
                          node->Name(), place);
    } else {
      var = new VarHandle(
          graph->CreateEmptyNode(node->Name(), ir::Node::Type::kVariable), 0,
          place_offset, node->Name(), place);
    }
    var_holder.emplace_back(var);
  } else {
X
clean1  
Xin Pan 已提交
109
    var = *var_holder.rbegin();
X
Xin Pan 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  }
  return var;
}

void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
                    ir::Node *new_node, const platform::Place &place,
                    size_t place_offset) {
  auto &vars =
      graph->Get<GraphVars>(kGraphVars)[place_offset][new_node->Name()];
  size_t version = vars.size();
  auto var =
      new VarHandle(new_node, version, place_offset, new_node->Name(), place);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
}

void AddOutputToLeafOps(ir::Graph *graph) {
  for (auto &op : graph->Get<GraphOps>(kGraphOps)) {
    if (!op->Outputs().empty()) {
      continue;
    }
    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    op->AddOutput(dummy_leaf);
  }
}
}  // namespace
Y
Yu Yang 已提交
137

C
chengduo 已提交
138 139
void MultiDevSSAGraphBuilderBase::CheckGraph(const ir::Graph &graph) const {}

140
void MultiDevSSAGraphBuilderBase::Init() const {
X
clean  
Xin Pan 已提交
141 142
  all_vars_.clear();

X
Xin Pan 已提交
143
  loss_var_name_ = Get<const std::string>(kLossVarName);
C
chengduo 已提交
144
  VLOG(10) << "Init MultiDevSSAGraphBuilder, loss name: " << loss_var_name_;
X
Xin Pan 已提交
145 146 147
  places_ = Get<const std::vector<platform::Place>>(kPlaces);
  local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
  strategy_ = Get<const BuildStrategy>(kStrategy);
P
peizhilin 已提交
148
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
149
  nccl_ctxs_ = &Get<platform::NCCLContextMap>(kNCCLCtxs);
Y
Yu Yang 已提交
150
#endif
C
chengduo 已提交
151
  PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
Y
Yu Yang 已提交
152 153
}

154
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
X
Xin Pan 已提交
155
    std::unique_ptr<ir::Graph> graph) const {
X
Xin Pan 已提交
156
  Init();
C
chengduo 已提交
157
  CheckGraph(*graph);
158
  std::vector<ir::Node *> sorted_ops = SortOperations(*graph);
C
chengduo 已提交
159

X
Xin Pan 已提交
160 161
  auto nodes = graph->ReleaseNodes();
  ir::Graph &result = *graph;
162 163

  for (auto &node : nodes) {
X
Xin Pan 已提交
164
    if (node->IsVar() && node->Var()) {
X
Xin Pan 已提交
165
      all_vars_.emplace(node->Name(), node->Var());
166
    }
C
fix ci  
chengduoZH 已提交
167
  }
Y
Yu Yang 已提交
168 169

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
170 171 172
  result.Set(kGraphVars, new GraphVars(places_.size()));
  result.Set(kGraphDepVars, new GraphDepVars);
  result.Set(kGraphOps, new GraphOps);
173

Y
Yu Yang 已提交
174
  bool is_forwarding = true;
X
Xin Pan 已提交
175

X
better  
Xin Pan 已提交
176
  for (ir::Node *node : sorted_ops) {
177 178
    if (DealWithSpecialOp(&result, node)) {
      continue;
Y
Yu Yang 已提交
179
    } else {
180 181 182 183 184 185 186 187 188
      // This op runs on all devices
      if (IsScaleLossOp(node)) {
        // user can customize loss@grad if not use_default_grad_scale_
        InsertScaleLossGradOp(&result, node);
        // This assumes the backward generating code will ensure IsScaleLossOp
        // is true only for the op that scale the final scalar loss.
        // It also assumes backward op will always follow the forward op in
        // the block.
        is_forwarding = false;
C
chengduo 已提交
189
      } else {
190 191
        CreateComputationalOps(&result, node, places_.size());
      }
192

W
Wu Yi 已提交
193 194
      // Insert collective ops if nranks > 1
      if (!is_forwarding && Get<size_t>(kNRanks) > 1) {
195
        try {
C
chengduo 已提交
196 197 198 199 200
          bool is_bk_op =
              static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward));
          if (!is_bk_op) continue;
201

C
chengduo 已提交
202 203
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
204 205 206 207 208 209 210 211
          auto backward_vars =
              boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                  OpProtoAndCheckerMaker::OpRoleVarAttrName()));
          PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
          for (size_t i = 0; i < backward_vars.size(); i += 2) {
            auto &p_name = backward_vars[i];
            auto &g_name = backward_vars[i + 1];
            VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
W
Wu Yi 已提交
212 213 214
            if (NeedCollectiveForGrad(g_name, sorted_ops)) {
              InsertCollectiveOp(&result, p_name, g_name);
            }
Y
Yu Yang 已提交
215
          }
216
        } catch (boost::bad_get e) {
Y
Yu Yang 已提交
217 218 219 220
        }
      }
    }
  }
221

222 223
  InsertPostprocessOps(&result);

Y
Yu Yang 已提交
224
  /*
X
Xin Pan 已提交
225 226
  Dependency graph has been constructed. However, there are still data
  hazards need to be handled.
227
  */
Y
Yu Yang 已提交
228
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
229

Y
Yu Yang 已提交
230 231 232 233
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
C
chengduo 已提交
234

Y
Yancey1989 已提交
235
  result.Erase(kGraphOps);
Q
qiaolongfei 已提交
236
  return graph;
Y
Yu Yang 已提交
237 238
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
void MultiDevSSAGraphBuilderBase::InsertScaleLossGradOp(
    ir::Graph *result, const ir::Node *node) const {
  // user can customize loss@grad if not use_default_grad_scale_
  size_t loss_scale = 0;
  switch (this->strategy_.gradient_scale_) {
    case BuildStrategy::GradientScaleStrategy::kOne:
      loss_scale = 1;
      break;
    case BuildStrategy::GradientScaleStrategy::kCoeffNumDevice:
      loss_scale = Get<size_t>(kNRanks);
      break;
    case BuildStrategy::GradientScaleStrategy::kCustomized:
      loss_scale = 0;
      break;
    default:
      LOG(FATAL) << "Unknown gradient scale strategy.";
      break;
  }

  if (loss_scale) {
    // TODO(paddle-dev): Why is there no input for this op_handle?
    auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
    auto out_dtype = this->all_vars_.at(loss_grad_name)->GetDataType();
    this->CreateScaleLossGradOp(result, loss_grad_name, node->outputs[0],
                                loss_scale, out_dtype);
  }
}
C
chengduo 已提交
266

C
chengduo 已提交
267 268 269 270 271
bool MultiDevSSAGraphBuilderBase::DealWithSpecialOp(ir::Graph *result,
                                                    ir::Node *node) const {
  return false;
}

272 273 274 275
std::vector<ir::Node *> MultiDevSSAGraphBuilderBase::SortOperations(
    const ir::Graph &graph) const {
  return ir::TopologySortOperations(graph);
}
C
chengduo 已提交
276

277 278 279 280 281 282 283
bool MultiDevSSAGraphBuilderBase::UseGPU() const {
  bool use_gpu = false;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  use_gpu = nccl_ctxs_ != nullptr;
#endif
  return use_gpu;
}
C
chengduo 已提交
284

W
Wu Yi 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298
bool MultiDevSSAGraphBuilderBase::NeedCollectiveForGrad(
    const std::string &grad_name, std::vector<ir::Node *> ops) const {
  // if we have allreduce_op for current gradient variable in the graph,
  // then we don't need to add allreduce_op_handle for this gradient
  // NOTE: This is for the case that all gradients should add collective ops
  for (auto *node : ops) {
    if (node->Op()->Type() != "allreduce") continue;
    for (auto in_name : node->Op()->InputArgumentNames()) {
      if (in_name == grad_name) {
        return false;
      }
    }
  }
  return true;
C
chengduo 已提交
299 300
}

301 302 303
void MultiDevSSAGraphBuilderBase::CreateOpHandleIOs(ir::Graph *result,
                                                    ir::Node *node,
                                                    size_t place_id) const {
C
chengduo 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  auto p = places_[place_id];
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));

  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
    op_handle->AddInput(var);
  }

  for (ir::Node *output : node->outputs) {
    ir::Node *new_node = nullptr;
    if (output->Var()) {
      new_node = result->CreateVarNode(output->Var());
    } else {
      new_node =
          result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
    }
    CreateOpOutput(result, op_handle, new_node, p, place_id);
  }
}

326
void MultiDevSSAGraphBuilderBase::SetCommunicationContext(
327
    OpHandleBase *op_handle, const platform::Place &p) const {
P
peizhilin 已提交
328
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
329 330 331 332 333 334 335 336 337 338
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

339 340 341
void MultiDevSSAGraphBuilderBase::CreateBroadcastOp(ir::Graph *result,
                                                    const std::string &p_name,
                                                    size_t src_dev_id) const {
P
peizhilin 已提交
342
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
polish  
Xin Pan 已提交
343 344 345
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
346
#else
X
polish  
Xin Pan 已提交
347 348 349
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
C
chengduoZH 已提交
350
#endif
X
Xin Pan 已提交
351
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
X
Xin Pan 已提交
352

X
Xin Pan 已提交
353
  auto *in =
X
clean1  
Xin Pan 已提交
354
      result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back();
C
chengduoZH 已提交
355 356 357 358
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
359
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
360
    auto &vars = result->Get<GraphVars>(kGraphVars).at(i).at(p_name);
X
polish  
Xin Pan 已提交
361 362 363
    auto *out_var = new VarHandle(
        result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), vars.size(),
        i, p_name, p);
C
chengduoZH 已提交
364 365 366 367 368
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

369
void MultiDevSSAGraphBuilderBase::CreateFusedBroadcastOp(
370 371
    ir::Graph *result,
    const std::vector<std::unordered_set<std::string>> &bcast_varnames) const {
P
peizhilin 已提交
372
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
#endif
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
  }

  for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) {
    for (auto &p_name : bcast_varnames[dev_id]) {
      auto *in =
X
clean1  
Xin Pan 已提交
391
          result->Get<GraphVars>(kGraphVars).at(dev_id).at(p_name).back();
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
      op_handle->AddInput(in);
      for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) {
        auto &p = places_[out_dev_id];
        auto &vars =
            result->Get<GraphVars>(kGraphVars).at(out_dev_id).at(p_name);
        auto *out_var = new VarHandle(
            result->CreateEmptyNode(p_name, ir::Node::Type::kVariable),
            vars.size(), out_dev_id, p_name, p);
        vars.emplace_back(out_var);
        op_handle->AddOutput(out_var);
      }
    }
  }
}

407 408 409
void MultiDevSSAGraphBuilderBase::CreateComputationalOp(ir::Graph *result,
                                                        ir::Node *node,
                                                        int dev_id) const {
X
Xin Pan 已提交
410
  result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
411
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
S
sneaxiy 已提交
412
                              local_scopes_[dev_id], places_[dev_id], dev_id));
413
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
414 415
}

416
void MultiDevSSAGraphBuilderBase::CreateAllReduceOp(
Y
Yancey1989 已提交
417
    ir::Graph *result, const std::string &og) const {
Y
Yancey1989 已提交
418 419 420
  OpHandleBase *op_handle = nullptr;

  auto append_allreduce_op = [&](
Y
Yancey1989 已提交
421 422
      const std::vector<Scope *> &scopes,
      const std::vector<platform::Place> &places) -> OpHandleBase * {
P
peizhilin 已提交
423
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
424 425 426
    result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
        result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
        scopes, places, nccl_ctxs_));
C
chengduoZH 已提交
427
#else
Y
Yancey1989 已提交
428 429 430
    result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
        result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
        scopes, places));
C
chengduoZH 已提交
431
#endif
Y
Yancey1989 已提交
432 433 434 435 436
    return result->Get<GraphOps>(kGraphOps).back();
  };

  if (!strategy_.enable_parallel_graph_)
    op_handle = append_allreduce_op(local_scopes_, places_);
Y
Yu Yang 已提交
437 438

  for (size_t i = 0; i < places_.size(); ++i) {
Y
Yancey1989 已提交
439 440 441
    if (strategy_.enable_parallel_graph_) {
      op_handle = append_allreduce_op({local_scopes_[i]}, {places_[i]});
    }
Y
Yancey1989 已提交
442

Y
Yancey1989 已提交
443
    SetCommunicationContext(op_handle, places_[i]);
X
Xin Pan 已提交
444
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
Y
Yu Yang 已提交
445 446
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
447
    op_handle->AddInput(prev_grad);
Y
Yu Yang 已提交
448

X
Xin Pan 已提交
449
    auto var =
X
polish  
Xin Pan 已提交
450
        new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
Y
Yancey1989 已提交
451
                      vars.size(), i, og, places_[i]);
Y
Yu Yang 已提交
452 453 454 455 456
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

457
void MultiDevSSAGraphBuilderBase::CreateScaleLossGradOp(
458
    ir::Graph *result, const std::string &loss_grad_name,
459 460
    ir::Node *out_var_node, size_t loss_scale,
    proto::VarType::Type dtype) const {
Y
Yu Yang 已提交
461
  for (size_t i = 0; i < places_.size(); ++i) {
Y
yuyang18 已提交
462
    auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
X
Xin Pan 已提交
463
    auto *op_handle = new ScaleLossGradOpHandle(
X
polish  
Xin Pan 已提交
464
        result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
465
        loss_scale, local_scopes_[i], places_[i], dev_ctx, dtype);
X
Xin Pan 已提交
466
    result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
Y
Yu Yang 已提交
467 468 469 470 471 472 473

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

474 475
    CreateOpOutput(result, op_handle,
                   result->CreateVarNode(out_var_node->Var()), places_[i], i);
Y
Yu Yang 已提交
476 477 478
  }
}

479 480
void MultiDevSSAGraphBuilderBase::CreateComputationalOps(
    ir::Graph *result, ir::Node *node, size_t num_places) const {
T
typhoonzero 已提交
481
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
482 483
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
S
sneaxiy 已提交
484 485
    result->Get<GraphOps>(kGraphOps).emplace_back(new ComputationOpHandle(
        result->CreateOpNode(node->Op()), s, p, scope_idx));
486
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
487 488 489
  }
}

490 491 492
VarHandle *MultiDevSSAGraphBuilderBase::CreateReduceOp(ir::Graph *result,
                                                       const std::string &og,
                                                       int dst_dev_id) const {
P
peizhilin 已提交
493
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
494
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
495 496
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
497
#else
X
Xin Pan 已提交
498
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
499 500
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
501
#endif
X
clean1  
Xin Pan 已提交
502
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
C
chengduoZH 已提交
503 504 505

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
506
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
507
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
C
chengduoZH 已提交
508 509
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
510
    op_handle->AddInput(prev_grad);
C
chengduoZH 已提交
511
  }
X
Xin Pan 已提交
512
  auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
X
polish  
Xin Pan 已提交
513 514 515
  auto var =
      new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                    vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
516 517 518 519 520
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

521
bool MultiDevSSAGraphBuilderBase::IsScaleLossOp(ir::Node *node) const {
C
chengduo 已提交
522 523
  return !loss_var_name_.empty() && node->Op() &&
         boost::get<int>(
524 525
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
             (static_cast<int>(OpRole::kBackward) |
C
chengduo 已提交
526
              static_cast<int>(OpRole::kLoss));
527 528 529 530 531
}

bool MultiDevSSAGraphBuilderBase::IsSparseGradient(
    const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
C
chengduo 已提交
532
  return all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS;
533 534 535
}

void AllReduceSSAGraphBuilder::InsertCollectiveOp(
Y
Yancey1989 已提交
536
    ir::Graph *result, const std::string &p_name,
537 538 539 540 541
    const std::string &g_name) const {
  if (IsSparseGradient(g_name)) {
    CreateReduceOp(result, g_name, 0);
    CreateBroadcastOp(result, g_name, 0);
  } else {
Y
Yancey1989 已提交
542
    CreateAllReduceOp(result, g_name);
543
  }
544
}
545

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
int BalanceVarSSAGraphBuilder::GetVarDeviceID(
    const std::string &varname) const {
  auto got = sharded_var_device_.find(varname);
  if (got == sharded_var_device_.end()) {
    auto pos = varname.find(framework::kNewGradSuffix);
    if (pos != std::string::npos) {
      got = sharded_var_device_.find(varname.substr(0, pos));
    }
  }
  return got == sharded_var_device_.end() ? -1 : got->second;
}

int BalanceVarSSAGraphBuilder::GetOpDeviceID(ir::Node *node) const {
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
    return -1;
  }
  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
    return -1;
  }
  auto param_grad = boost::get<std::vector<std::string>>(
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1]);
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
                    node->Op()->Type(), param_grad[0], param_grad[1]);
  return dev_id;
}

size_t BalanceVarSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
    if (all_vars_.find(var_name) == all_vars_.end()) continue;
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

void BalanceVarSSAGraphBuilder::ResetState() const {
  balance_vars_.clear();
  sharded_var_device_.clear();

  balance_vars_.resize(places_.size(), 0);
}

void ReduceSSAGraphBuilder::Init() const {
  MultiDevSSAGraphBuilderBase::Init();
  ResetState();
}

void ReduceSSAGraphBuilder::ResetState() const {
  BalanceVarSSAGraphBuilder::ResetState();
  bcast_var_name_set_.clear();
  bcast_var_name_set_.resize(places_.size());
}

void ReduceSSAGraphBuilder::InsertCollectiveOp(
Y
Yancey1989 已提交
615
    ir::Graph *result, const std::string &p_name,
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    const std::string &g_name) const {
  size_t cur_device_id = GetAppropriateDeviceID({g_name});
  CreateReduceOp(result, g_name, cur_device_id);
  sharded_var_device_.emplace(g_name, cur_device_id);
  bcast_var_name_set_[cur_device_id].emplace(p_name);
}

bool ReduceSSAGraphBuilder::DealWithSpecialOp(ir::Graph *result,
                                              ir::Node *node) const {
  int op_dev_id = BalanceVarSSAGraphBuilder::GetOpDeviceID(node);
  if (op_dev_id != -1) {
    // This op only runs on one specific device.
    CreateComputationalOp(result, node, op_dev_id);
    for (ir::Node *n : node->outputs) {
      sharded_var_device_.emplace(n->Name(), op_dev_id);
    }
    return true;
  }
  return false;
}

void ReduceSSAGraphBuilder::InsertPostprocessOps(ir::Graph *result) const {
  if (UseGPU()) {
    if (strategy_.fuse_broadcast_op_) {
      CreateFusedBroadcastOp(result, bcast_var_name_set_);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set_.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set_[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(result, bcast_name, dev_id);
        }
Y
Yancey1989 已提交
647 648
      }
    }
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
  }
}

int ReduceSSAGraphBuilder::GetOpDeviceID(
    ir::Node *node,
    std::unordered_map<std::string, std::vector<ir::Node *>> *delay_ops) const {
  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
    return -1;
  }

  auto param_grad = boost::get<std::vector<std::string>>(
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1]);

  if (dev_id == -1) {
    (*delay_ops)[param_grad[1]].push_back(node);
    return -2;
  }
  return dev_id;
}

std::vector<ir::Node *> ReduceSSAGraphBuilder::SortOperations(
    const ir::Graph &graph) const {
  std::vector<ir::Node *> sorted_ops = ir::TopologySortOperations(graph);
  return SortForReduceMode(sorted_ops);
}

std::vector<ir::Node *> ReduceSSAGraphBuilder::SortForReduceMode(
    const std::vector<ir::Node *> &topo_ops) const {
  std::vector<ir::Node *> sorted_ops;
  std::unordered_map<std::string, std::vector<ir::Node *>> delayed_op;
  sorted_ops.reserve(topo_ops.size());
  ResetState();

  auto insert_delayed_op = [&](const std::string &var_name, int dev_id) {
    sharded_var_device_.emplace(var_name, dev_id);
    if (delayed_op.count(var_name)) {
      auto &ops = delayed_op.at(var_name);
      sorted_ops.insert(sorted_ops.end(), ops.begin(), ops.end());
      delayed_op.at(var_name).clear();
Y
Yancey1989 已提交
691
    }
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
  };

  for (ir::Node *node : topo_ops) {
    int op_dev_id = GetOpDeviceID(node, &delayed_op);
    if (op_dev_id > -1) {
      // This op only runs on one specific device.
      sorted_ops.emplace_back(node);
      for (ir::Node *n : node->outputs) {
        insert_delayed_op(n->Name(), op_dev_id);
      }
    } else if (op_dev_id == -1) {
      // This op runs on all devices, and its output may have parameter's
      // gradients.
      sorted_ops.emplace_back(node);
      bool is_bk_op =
          static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                OpProtoAndCheckerMaker::OpRoleAttrName())) &
                            static_cast<int>(OpRole::kBackward));
      if (!is_bk_op) continue;
      // Currently, we assume that once gradient is generated, it can be
      // broadcast, and each gradient is only broadcast once.
      std::vector<std::string> backward_vars;
      try {
        backward_vars =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      } catch (boost::bad_get e) {
      }
      PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

      for (size_t i = 0; i < backward_vars.size(); i += 2) {
        auto &g_name = backward_vars[i + 1];
        size_t cur_device_id = GetAppropriateDeviceID({g_name});
        insert_delayed_op(g_name, static_cast<int>(cur_device_id));
      }
    } else if (op_dev_id == -2) {
      // The Op on which the Op depends has not yet been generated.
Y
yi.wu 已提交
729
    }
Y
Yancey1989 已提交
730 731
  }

732
  PADDLE_ENFORCE_EQ(sorted_ops.size(), topo_ops.size());
Y
Yancey1989 已提交
733

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
  ResetState();
  return sorted_ops;
}

void DistSSAGraphBuilder::Init() const {
  MultiDevSSAGraphBuilderBase::Init();
  ResetState();
}

void DistSSAGraphBuilder::ResetState() const {
  BalanceVarSSAGraphBuilder::ResetState();
  bcast_var_name_set_.clear();
  bcast_var_name_set_.resize(places_.size());
}

bool DistSSAGraphBuilder::DealWithSpecialOp(ir::Graph *result,
                                            ir::Node *node) const {
  bool insert_op = false;
  if (OpHaveRole(*node, OpRole::kRPC)) {
    int op_dev_id = CreateRPCOp(result, node);
    PADDLE_ENFORCE(op_dev_id != -1,
                   "Can not schedule the RPC operator to the right place.");
    if (node->Op()->Type() == "recv") {
      auto recv_vars_attr =
          boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
              OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE(recv_vars_attr.size() == 2UL);  // [parameter, gradient]
      if (recv_vars_attr[0].find(".block") == std::string::npos) {
        bcast_var_name_set_[op_dev_id].emplace(recv_vars_attr[0]);
      }
    }
    insert_op = true;
    need_broadcast_var_ = true;
  } else if (OpHaveRole(*node, OpRole::kDist)) {
    int op_dev_id = CreateDistTrainOp(result, node);
    if (node->Op()->Type() == "concat") {
      auto origin_param_name = node->Op()->OutputArgumentNames()[0];
      bcast_var_name_set_[op_dev_id].emplace(origin_param_name);
    }
    insert_op = true;
  } else {
    int op_dev_id = GetOpDeviceID(node);
    if (op_dev_id != -1) {  // This op only runs on one specific device.
      CreateComputationalOp(result, node, op_dev_id);
      for (ir::Node *n : node->outputs) {
        sharded_var_device_.emplace(n->Name(), op_dev_id);
      }
      insert_op = true;
    }
  }
  return insert_op;
W
Wu Yi 已提交
785 786 787
}

void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
X
clean1  
Xin Pan 已提交
788
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
789 790 791 792 793 794
  for (ir::Node *input : node->inputs) {
    VarHandle *var = nullptr;
    for (int place_offset = 0; place_offset < num_places; ++place_offset) {
      auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
      auto &var_holder = var_holders[input->Name()];
      if (!var_holder.empty()) {
X
clean1  
Xin Pan 已提交
795
        var = *var_holder.rbegin();
W
Wu Yi 已提交
796 797 798
        op_handle->AddInput(var);
      }
    }
Y
Yancey1989 已提交
799 800 801
  }
}

802
// Create RPC related op handles that connects its in ops and out ops.
803
int DistSSAGraphBuilder::CreateRPCOp(ir::Graph *result, ir::Node *node) const {
Y
Yancey1989 已提交
804
  int op_dev_id = -1;
805
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
806
    // TODO(paddle-dev): getting the first var is not safe.
807
    op_dev_id = GetVarDeviceID(node->inputs[0]->Name());
X
Xin Pan 已提交
808 809
    PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
                   "This hack no longer holds, please fix.");
Y
Yancey1989 已提交
810 811 812
    // the variable name which contains .block means it was splited by
    // split_byref op
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
813
        node->inputs[0]->Name().find(".block") == std::string::npos) {
814 815
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
816
        input_var_names.push_back(n->Name());
817
      }
W
Wu Yi 已提交
818 819 820 821
      auto send_param_grad = boost::get<std::vector<std::string>>(
          node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
      op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
M
minqiyang 已提交
822 823
      VLOG(10) << "send grad " << input_var_names[0] << " origin "
               << send_param_grad[1] << " place: " << op_dev_id;
824
      for (auto &varname : input_var_names) {
825
        sharded_var_device_.emplace(varname, op_dev_id);
Y
Yancey1989 已提交
826
      }
827
      sharded_var_device_.emplace(send_param_grad[1], op_dev_id);
Y
Yancey1989 已提交
828
    }
829 830 831
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
832
      output_var_names.push_back(n->Name());
833
    }
W
Wu Yi 已提交
834 835 836
    auto recv_param_grad = boost::get<std::vector<std::string>>(
        node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
    if (recv_param_grad.size() == 2U) {
837
      op_dev_id = GetVarDeviceID(recv_param_grad[1]);
M
minqiyang 已提交
838 839 840
      VLOG(10) << "recv param " << recv_param_grad[0]
               << " get grad place: " << recv_param_grad[1]
               << " place: " << op_dev_id;
W
Wu Yi 已提交
841 842 843
    } else {
      op_dev_id = GetAppropriateDeviceID(output_var_names);
    }
844
    for (auto &varname : output_var_names) {
845
      sharded_var_device_.emplace(varname, op_dev_id);
Y
Yancey1989 已提交
846 847
    }
  } else {
W
Wu Yi 已提交
848
    // send_barrier, fetch_barrier will run on place 0;
Y
Yancey1989 已提交
849 850 851 852
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
853
                 node->Op()->Type());
X
Xin Pan 已提交
854
  result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
855 856
      result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
      node->Op()->Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
857

W
Wu Yi 已提交
858 859
  if (node->Op()->Type() == "send") {
    CreateOpHandleIOs(result, node, op_dev_id);
Y
Yancey1989 已提交
860
  } else {
W
Wu Yi 已提交
861 862 863
    // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
    // all places
    auto p = places_[op_dev_id];
X
clean1  
Xin Pan 已提交
864
    auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
865 866
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
Y
Yancey1989 已提交
867

W
Wu Yi 已提交
868 869 870 871
    SetOpInputsAllPlaces(result, node, places_.size());
    for (ir::Node *output : node->outputs) {
      int outvar_dev_id = op_dev_id;
      if (node->Op()->Type() == "fetch_barrier") {
872
        outvar_dev_id = GetVarDeviceID(output->Name());
Q
Qiao Longfei 已提交
873
        PADDLE_ENFORCE_NE(outvar_dev_id, -1, "output name %s", output->Name());
W
Wu Yi 已提交
874 875 876 877 878 879 880 881 882 883 884 885
      }
      p = places_[outvar_dev_id];
      ir::Node *new_node = nullptr;
      if (output->Var()) {
        new_node = result->CreateVarNode(output->Var());
      } else {
        new_node =
            result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
      }
      CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
    }
  }
Y
Yancey1989 已提交
886
  return op_dev_id;
Y
Yu Yang 已提交
887 888
}

889 890 891 892 893 894 895
int DistSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
                                           ir::Node *node) const {
  int op_dev_id = -1;
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
    input_var_names.push_back(input->Name());
C
chengduo 已提交
896
  }
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
  for (ir::Node *output : node->outputs) {
    output_var_names.push_back(output->Name());
  }

  if (node->Op()->Type() == "split_byref" ||
      node->Op()->Type() == "split_selected_rows" ||
      node->Op()->Type() == "split_ids") {
    // TODO(paddle-dev): getting the first var is not safe.
    op_dev_id = GetVarDeviceID(input_var_names[0]);
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
        sharded_var_device_.emplace(varname, op_dev_id);
      }
    }
    for (auto &varname : output_var_names) {
      sharded_var_device_.emplace(varname, op_dev_id);
    }
  } else if (node->Op()->Type() == "concat") {
    op_dev_id = GetVarDeviceID(input_var_names[0]);
    for (auto &varname : output_var_names) {
      sharded_var_device_.emplace(varname, op_dev_id);
    }
  } else {
    LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
    PADDLE_THROW(
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());

  CreateComputationalOp(result, node, op_dev_id);
  return op_dev_id;
C
chengduo 已提交
933 934
}

Y
Yancey1989 已提交
935
void DistSSAGraphBuilder::InsertCollectiveOp(ir::Graph *result,
936 937 938 939 940 941 942 943 944 945 946 947 948 949
                                             const std::string &p_name,
                                             const std::string &g_name) const {
  size_t cur_device_id = 0;
  switch (strategy_.reduce_) {
    case BuildStrategy::ReduceStrategy::kReduce:
      cur_device_id = GetAppropriateDeviceID({g_name});
      CreateReduceOp(result, g_name, cur_device_id);
      sharded_var_device_.emplace(g_name, cur_device_id);
      break;
    case BuildStrategy::ReduceStrategy::kAllReduce:
      if (IsSparseGradient(g_name)) {
        CreateReduceOp(result, g_name, 0);
        CreateBroadcastOp(result, g_name, 0);
      } else {
Y
Yancey1989 已提交
950
        CreateAllReduceOp(result, g_name);
951 952 953 954 955 956 957 958 959
      }
      break;
    default:
      LOG(FATAL) << "Unknown reduce strategy.";
      break;
  }
}

void DistSSAGraphBuilder::InsertPostprocessOps(ir::Graph *result) const {
960 961
  // broad cast received parameters when training in parameter server mode.
  if (need_broadcast_var_) {
Q
Qiao Longfei 已提交
962 963 964 965 966 967 968 969
    // There are 4 conditions:
    // 1. GPU && Reduce: Reduce gradient then broadcast gradient to other GPUS.
    // Need to broadcast received parameters to other GPU.
    // 2. GPU && AllReduce: AllReduce all graident to each GPU. Need to
    // broadcast received parameters to other GPU.
    // 3. CPU && AllReduce: AllReduce all gradient to each thread. Need to
    // broadcast received parameters to other scope.
    // 4. CPU && Reduce: because all parameters share the same memory, did not
Q
Qiao Longfei 已提交
970
    // broadcast received parameters.
971
    if (!UseGPU() &&
Q
Qiao Longfei 已提交
972
        strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
973 974
      return;
    }
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
    if (strategy_.fuse_broadcast_op_) {
      CreateFusedBroadcastOp(result, bcast_var_name_set_);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set_.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set_[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(result, bcast_name, dev_id);
        }
      }
    }
  }
}

std::unordered_set<std::string> &MultiDevSSAGraphBuilder() {
  static std::unordered_set<std::string> regs;
  return regs;
Y
Yu Yang 已提交
991
}
992 993 994 995 996 997

static int MultiDevSSAGraphBuilderRegister(const std::string &builder_mode) {
  MultiDevSSAGraphBuilder().insert(builder_mode);
  return 0;
}

Y
Yu Yang 已提交
998 999 1000
}  // namespace details
}  // namespace framework
}  // namespace paddle
X
Xin Pan 已提交
1001

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
#define REGISTER_MULTI_DEVICES_PASS(pass_name, pass_class)                     \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                              \
      _reg_ssa_graph_builder_##pass_name,                                      \
      "REGISTER_MULTI_DEVICES_PASS must be called in global namespace.");      \
  int _reg_ssa_graph_builder_entry_##pass_name =                               \
      paddle::framework::details::MultiDevSSAGraphBuilderRegister(#pass_name); \
  REGISTER_PASS(pass_name, pass_class)                                         \
      .RequirePassAttr(paddle::framework::details::kLossVarName)               \
      .RequirePassAttr(paddle::framework::details::kPlaces)                    \
      .RequirePassAttr(paddle::framework::details::kLocalScopes)               \
      .RequirePassAttr(paddle::framework::details::kStrategy)                  \
Y
Yancey1989 已提交
1013
      .RequirePassAttr(paddle::framework::details::kNRanks)
1014 1015 1016 1017

REGISTER_MULTI_DEVICES_PASS(reduce_mode_multi_devices_pass,
                            paddle::framework::details::ReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(
C
chengduo 已提交
1018
    all_reduce_mode_multi_devices_pass,
1019 1020 1021
    paddle::framework::details::AllReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(dist_multi_devices_pass,
                            paddle::framework::details::DistSSAGraphBuilder);