multi_devices_graph_pass.cc 36.7 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

20
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/computation_op_handle.h"
23
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
24
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
X
Xin Pan 已提交
25
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
C
chengduoZH 已提交
26
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
27
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
better  
Xin Pan 已提交
29
#include "paddle/fluid/framework/ir/graph_helper.h"
X
Xin Pan 已提交
30
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
31
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34 35 36
namespace paddle {
namespace framework {
namespace details {
X
Xin Pan 已提交
37

X
Xin Pan 已提交
38
namespace {
Y
Yancey1989 已提交
39 40 41 42 43
// TODO(panyx0718): Clean this up as well.
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef std::vector<OpHandleBase *> GraphOps;
const char kGraphOps[] = "ops";
X
Xin Pan 已提交
44

C
chengduo 已提交
45 46 47 48 49 50
bool OpHaveRole(const ir::Node &node, const framework::OpRole &role) {
  return boost::get<int>(
             node.Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
         static_cast<int>(role);
}

X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
void PolishGraphToSupportDataHazards(ir::Graph *graph) {
  for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
    for (auto &name_pair : var_map) {
      if (name_pair.second.size() <= 1) {
        continue;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        OpHandleBase *write_op = (*it_new)->GeneratedOp();
        const auto &read_ops = (*it_old)->PendingOps();

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
          bool has_dep = false;
          for (auto *r_out : read_op->Outputs()) {
            for (auto *w_in : write_op->Inputs()) {
              if (r_out->Node() == w_in->Node()) {
                has_dep = true;
                break;
              }
            }
          }
          if (has_dep) continue;

          auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
          read_op->AddOutput(dep_var);
          write_op->AddInput(dep_var);
          graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        }
      }
    }
  }
}

VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
                                      const platform::Place &place,
                                      size_t place_offset) {
  auto &var_holders = graph->Get<GraphVars>(kGraphVars)[place_offset];
  auto &var_holder = var_holders[node->Name()];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    if (node->Var()) {
      var = new VarHandle(graph->CreateVarNode(node->Var()), 0, place_offset,
                          node->Name(), place);
    } else {
      var = new VarHandle(
          graph->CreateEmptyNode(node->Name(), ir::Node::Type::kVariable), 0,
          place_offset, node->Name(), place);
    }
    var_holder.emplace_back(var);
  } else {
X
clean1  
Xin Pan 已提交
108
    var = *var_holder.rbegin();
X
Xin Pan 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  }
  return var;
}

void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
                    ir::Node *new_node, const platform::Place &place,
                    size_t place_offset) {
  auto &vars =
      graph->Get<GraphVars>(kGraphVars)[place_offset][new_node->Name()];
  size_t version = vars.size();
  auto var =
      new VarHandle(new_node, version, place_offset, new_node->Name(), place);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
}

void AddOutputToLeafOps(ir::Graph *graph) {
  for (auto &op : graph->Get<GraphOps>(kGraphOps)) {
    if (!op->Outputs().empty()) {
      continue;
    }
    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    op->AddOutput(dummy_leaf);
  }
}
}  // namespace
Y
Yu Yang 已提交
136

137
void MultiDevSSAGraphBuilderBase::Init() const {
X
clean  
Xin Pan 已提交
138 139
  all_vars_.clear();

X
Xin Pan 已提交
140 141 142 143
  loss_var_name_ = Get<const std::string>(kLossVarName);
  places_ = Get<const std::vector<platform::Place>>(kPlaces);
  local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
  strategy_ = Get<const BuildStrategy>(kStrategy);
P
peizhilin 已提交
144
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
145
  nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs");
Y
Yu Yang 已提交
146
#endif
Y
Yu Yang 已提交
147 148
}

149
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
X
Xin Pan 已提交
150
    std::unique_ptr<ir::Graph> graph) const {
X
Xin Pan 已提交
151
  Init();
152
  std::vector<ir::Node *> sorted_ops = SortOperations(*graph);
C
chengduo 已提交
153

X
Xin Pan 已提交
154 155
  auto nodes = graph->ReleaseNodes();
  ir::Graph &result = *graph;
156 157

  for (auto &node : nodes) {
X
Xin Pan 已提交
158
    if (node->IsVar() && node->Var()) {
X
Xin Pan 已提交
159
      all_vars_.emplace(node->Name(), node->Var());
160
    }
C
fix ci  
chengduoZH 已提交
161
  }
Y
Yu Yang 已提交
162 163

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
164 165 166
  result.Set(kGraphVars, new GraphVars(places_.size()));
  result.Set(kGraphDepVars, new GraphDepVars);
  result.Set(kGraphOps, new GraphOps);
167

Y
Yu Yang 已提交
168
  bool is_forwarding = true;
X
Xin Pan 已提交
169

X
better  
Xin Pan 已提交
170
  for (ir::Node *node : sorted_ops) {
171 172
    if (DealWithSpecialOp(&result, node)) {
      continue;
Y
Yu Yang 已提交
173
    } else {
174 175 176 177 178 179 180 181 182
      // This op runs on all devices
      if (IsScaleLossOp(node)) {
        // user can customize loss@grad if not use_default_grad_scale_
        InsertScaleLossGradOp(&result, node);
        // This assumes the backward generating code will ensure IsScaleLossOp
        // is true only for the op that scale the final scalar loss.
        // It also assumes backward op will always follow the forward op in
        // the block.
        is_forwarding = false;
C
chengduo 已提交
183
      } else {
184 185
        CreateComputationalOps(&result, node, places_.size());
      }
186

W
Wu Yi 已提交
187 188
      // Insert collective ops if nranks > 1
      if (!is_forwarding && Get<size_t>(kNRanks) > 1) {
189
        try {
C
chengduo 已提交
190 191 192 193 194
          bool is_bk_op =
              static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward));
          if (!is_bk_op) continue;
195

C
chengduo 已提交
196 197
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
198 199 200 201 202 203 204 205 206
          auto backward_vars =
              boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                  OpProtoAndCheckerMaker::OpRoleVarAttrName()));
          PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

          for (size_t i = 0; i < backward_vars.size(); i += 2) {
            auto &p_name = backward_vars[i];
            auto &g_name = backward_vars[i + 1];
            VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
W
Wu Yi 已提交
207 208 209
            if (NeedCollectiveForGrad(g_name, sorted_ops)) {
              InsertCollectiveOp(&result, p_name, g_name);
            }
Y
Yu Yang 已提交
210
          }
211
        } catch (boost::bad_get e) {
Y
Yu Yang 已提交
212 213 214 215
        }
      }
    }
  }
216

217 218
  InsertPostprocessOps(&result);

Y
Yu Yang 已提交
219
  /*
X
Xin Pan 已提交
220 221
  Dependency graph has been constructed. However, there are still data
  hazards need to be handled.
222
  */
Y
Yu Yang 已提交
223
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
224

Y
Yu Yang 已提交
225 226 227 228
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
Y
Yancey1989 已提交
229
  result.Erase(kGraphOps);
Q
qiaolongfei 已提交
230
  return graph;
Y
Yu Yang 已提交
231 232
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
void MultiDevSSAGraphBuilderBase::InsertScaleLossGradOp(
    ir::Graph *result, const ir::Node *node) const {
  // user can customize loss@grad if not use_default_grad_scale_
  size_t loss_scale = 0;
  switch (this->strategy_.gradient_scale_) {
    case BuildStrategy::GradientScaleStrategy::kOne:
      loss_scale = 1;
      break;
    case BuildStrategy::GradientScaleStrategy::kCoeffNumDevice:
      loss_scale = Get<size_t>(kNRanks);
      break;
    case BuildStrategy::GradientScaleStrategy::kCustomized:
      loss_scale = 0;
      break;
    default:
      LOG(FATAL) << "Unknown gradient scale strategy.";
      break;
  }

  if (loss_scale) {
    // TODO(paddle-dev): Why is there no input for this op_handle?
    auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
    auto out_dtype = this->all_vars_.at(loss_grad_name)->GetDataType();
    this->CreateScaleLossGradOp(result, loss_grad_name, node->outputs[0],
                                loss_scale, out_dtype);
  }
}
C
chengduo 已提交
260

261 262 263 264
std::vector<ir::Node *> MultiDevSSAGraphBuilderBase::SortOperations(
    const ir::Graph &graph) const {
  return ir::TopologySortOperations(graph);
}
C
chengduo 已提交
265

266 267 268 269 270 271 272
bool MultiDevSSAGraphBuilderBase::UseGPU() const {
  bool use_gpu = false;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  use_gpu = nccl_ctxs_ != nullptr;
#endif
  return use_gpu;
}
C
chengduo 已提交
273

W
Wu Yi 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287
bool MultiDevSSAGraphBuilderBase::NeedCollectiveForGrad(
    const std::string &grad_name, std::vector<ir::Node *> ops) const {
  // if we have allreduce_op for current gradient variable in the graph,
  // then we don't need to add allreduce_op_handle for this gradient
  // NOTE: This is for the case that all gradients should add collective ops
  for (auto *node : ops) {
    if (node->Op()->Type() != "allreduce") continue;
    for (auto in_name : node->Op()->InputArgumentNames()) {
      if (in_name == grad_name) {
        return false;
      }
    }
  }
  return true;
C
chengduo 已提交
288 289
}

290 291 292
void MultiDevSSAGraphBuilderBase::CreateOpHandleIOs(ir::Graph *result,
                                                    ir::Node *node,
                                                    size_t place_id) const {
C
chengduo 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  auto p = places_[place_id];
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));

  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
    op_handle->AddInput(var);
  }

  for (ir::Node *output : node->outputs) {
    ir::Node *new_node = nullptr;
    if (output->Var()) {
      new_node = result->CreateVarNode(output->Var());
    } else {
      new_node =
          result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
    }
    CreateOpOutput(result, op_handle, new_node, p, place_id);
  }
}

315
void MultiDevSSAGraphBuilderBase::SetCommunicationContext(
316
    OpHandleBase *op_handle, const platform::Place &p) const {
P
peizhilin 已提交
317
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
318 319 320 321 322 323 324 325 326 327
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

328 329 330
void MultiDevSSAGraphBuilderBase::CreateBroadcastOp(ir::Graph *result,
                                                    const std::string &p_name,
                                                    size_t src_dev_id) const {
P
peizhilin 已提交
331
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
polish  
Xin Pan 已提交
332 333 334
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
335
#else
X
polish  
Xin Pan 已提交
336 337 338
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
C
chengduoZH 已提交
339
#endif
X
Xin Pan 已提交
340
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
X
Xin Pan 已提交
341

X
Xin Pan 已提交
342
  auto *in =
X
clean1  
Xin Pan 已提交
343
      result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back();
C
chengduoZH 已提交
344 345 346 347
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
348
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
349
    auto &vars = result->Get<GraphVars>(kGraphVars).at(i).at(p_name);
X
polish  
Xin Pan 已提交
350 351 352
    auto *out_var = new VarHandle(
        result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), vars.size(),
        i, p_name, p);
C
chengduoZH 已提交
353 354 355 356 357
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

358
void MultiDevSSAGraphBuilderBase::CreateFusedBroadcastOp(
359 360
    ir::Graph *result,
    const std::vector<std::unordered_set<std::string>> &bcast_varnames) const {
P
peizhilin 已提交
361
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
#endif
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
  }

  for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) {
    for (auto &p_name : bcast_varnames[dev_id]) {
      auto *in =
X
clean1  
Xin Pan 已提交
380
          result->Get<GraphVars>(kGraphVars).at(dev_id).at(p_name).back();
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
      op_handle->AddInput(in);
      for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) {
        auto &p = places_[out_dev_id];
        auto &vars =
            result->Get<GraphVars>(kGraphVars).at(out_dev_id).at(p_name);
        auto *out_var = new VarHandle(
            result->CreateEmptyNode(p_name, ir::Node::Type::kVariable),
            vars.size(), out_dev_id, p_name, p);
        vars.emplace_back(out_var);
        op_handle->AddOutput(out_var);
      }
    }
  }
}

396 397 398
void MultiDevSSAGraphBuilderBase::CreateComputationalOp(ir::Graph *result,
                                                        ir::Node *node,
                                                        int dev_id) const {
X
Xin Pan 已提交
399
  result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
400
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
S
sneaxiy 已提交
401
                              local_scopes_[dev_id], places_[dev_id], dev_id));
402
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
403 404
}

405
void MultiDevSSAGraphBuilderBase::CreateAllReduceOp(
Y
Yancey1989 已提交
406
    ir::Graph *result, const std::string &og) const {
Y
Yancey1989 已提交
407 408 409
  OpHandleBase *op_handle = nullptr;

  auto append_allreduce_op = [&](
Y
Yancey1989 已提交
410 411
      const std::vector<Scope *> &scopes,
      const std::vector<platform::Place> &places) -> OpHandleBase * {
P
peizhilin 已提交
412
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
413 414 415
    result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
        result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
        scopes, places, nccl_ctxs_));
C
chengduoZH 已提交
416
#else
Y
Yancey1989 已提交
417 418 419
    result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
        result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
        scopes, places));
C
chengduoZH 已提交
420
#endif
Y
Yancey1989 已提交
421 422 423 424 425
    return result->Get<GraphOps>(kGraphOps).back();
  };

  if (!strategy_.enable_parallel_graph_)
    op_handle = append_allreduce_op(local_scopes_, places_);
Y
Yu Yang 已提交
426 427

  for (size_t i = 0; i < places_.size(); ++i) {
Y
Yancey1989 已提交
428 429 430
    if (strategy_.enable_parallel_graph_) {
      op_handle = append_allreduce_op({local_scopes_[i]}, {places_[i]});
    }
Y
Yancey1989 已提交
431

Y
Yancey1989 已提交
432
    SetCommunicationContext(op_handle, places_[i]);
X
Xin Pan 已提交
433
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
Y
Yu Yang 已提交
434 435
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
436
    op_handle->AddInput(prev_grad);
Y
Yu Yang 已提交
437

X
Xin Pan 已提交
438
    auto var =
X
polish  
Xin Pan 已提交
439
        new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
Y
Yancey1989 已提交
440
                      vars.size(), i, og, places_[i]);
Y
Yu Yang 已提交
441 442 443 444 445
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

446
void MultiDevSSAGraphBuilderBase::CreateScaleLossGradOp(
447
    ir::Graph *result, const std::string &loss_grad_name,
448 449
    ir::Node *out_var_node, size_t loss_scale,
    proto::VarType::Type dtype) const {
Y
Yu Yang 已提交
450
  for (size_t i = 0; i < places_.size(); ++i) {
Y
yuyang18 已提交
451
    auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
X
Xin Pan 已提交
452
    auto *op_handle = new ScaleLossGradOpHandle(
X
polish  
Xin Pan 已提交
453
        result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
454
        loss_scale, local_scopes_[i], places_[i], dev_ctx, dtype);
X
Xin Pan 已提交
455
    result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
Y
Yu Yang 已提交
456 457 458 459 460 461 462

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

463 464
    CreateOpOutput(result, op_handle,
                   result->CreateVarNode(out_var_node->Var()), places_[i], i);
Y
Yu Yang 已提交
465 466 467
  }
}

468 469
void MultiDevSSAGraphBuilderBase::CreateComputationalOps(
    ir::Graph *result, ir::Node *node, size_t num_places) const {
T
typhoonzero 已提交
470
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
471 472
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
S
sneaxiy 已提交
473 474
    result->Get<GraphOps>(kGraphOps).emplace_back(new ComputationOpHandle(
        result->CreateOpNode(node->Op()), s, p, scope_idx));
475
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
476 477 478
  }
}

479 480 481
VarHandle *MultiDevSSAGraphBuilderBase::CreateReduceOp(ir::Graph *result,
                                                       const std::string &og,
                                                       int dst_dev_id) const {
P
peizhilin 已提交
482
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
483
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
484 485
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
486
#else
X
Xin Pan 已提交
487
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
488 489
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
490
#endif
X
clean1  
Xin Pan 已提交
491
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
C
chengduoZH 已提交
492 493 494

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
495
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
496
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
C
chengduoZH 已提交
497 498
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
499
    op_handle->AddInput(prev_grad);
C
chengduoZH 已提交
500
  }
X
Xin Pan 已提交
501
  auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
X
polish  
Xin Pan 已提交
502 503 504
  auto var =
      new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                    vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
505 506 507 508 509
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

510 511 512 513 514 515 516 517 518 519 520 521 522
bool MultiDevSSAGraphBuilderBase::IsScaleLossOp(ir::Node *node) const {
  return boost::get<int>(
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
}

bool MultiDevSSAGraphBuilderBase::IsSparseGradient(
    const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
  if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
    return true;
523
  }
524 525 526 527
  return false;
}

void AllReduceSSAGraphBuilder::InsertCollectiveOp(
Y
Yancey1989 已提交
528
    ir::Graph *result, const std::string &p_name,
529 530 531 532 533
    const std::string &g_name) const {
  if (IsSparseGradient(g_name)) {
    CreateReduceOp(result, g_name, 0);
    CreateBroadcastOp(result, g_name, 0);
  } else {
Y
Yancey1989 已提交
534
    CreateAllReduceOp(result, g_name);
535
  }
536
}
537

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
int BalanceVarSSAGraphBuilder::GetVarDeviceID(
    const std::string &varname) const {
  auto got = sharded_var_device_.find(varname);
  if (got == sharded_var_device_.end()) {
    auto pos = varname.find(framework::kNewGradSuffix);
    if (pos != std::string::npos) {
      got = sharded_var_device_.find(varname.substr(0, pos));
    }
  }
  return got == sharded_var_device_.end() ? -1 : got->second;
}

int BalanceVarSSAGraphBuilder::GetOpDeviceID(ir::Node *node) const {
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
    return -1;
  }
  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
    return -1;
  }
  auto param_grad = boost::get<std::vector<std::string>>(
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1]);
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
                    node->Op()->Type(), param_grad[0], param_grad[1]);
  return dev_id;
}

size_t BalanceVarSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
    if (all_vars_.find(var_name) == all_vars_.end()) continue;
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

void BalanceVarSSAGraphBuilder::ResetState() const {
  balance_vars_.clear();
  sharded_var_device_.clear();

  balance_vars_.resize(places_.size(), 0);
}

void ReduceSSAGraphBuilder::Init() const {
  MultiDevSSAGraphBuilderBase::Init();
  ResetState();
}

void ReduceSSAGraphBuilder::ResetState() const {
  BalanceVarSSAGraphBuilder::ResetState();
  bcast_var_name_set_.clear();
  bcast_var_name_set_.resize(places_.size());
}

void ReduceSSAGraphBuilder::InsertCollectiveOp(
Y
Yancey1989 已提交
607
    ir::Graph *result, const std::string &p_name,
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    const std::string &g_name) const {
  size_t cur_device_id = GetAppropriateDeviceID({g_name});
  CreateReduceOp(result, g_name, cur_device_id);
  sharded_var_device_.emplace(g_name, cur_device_id);
  bcast_var_name_set_[cur_device_id].emplace(p_name);
}

bool ReduceSSAGraphBuilder::DealWithSpecialOp(ir::Graph *result,
                                              ir::Node *node) const {
  int op_dev_id = BalanceVarSSAGraphBuilder::GetOpDeviceID(node);
  if (op_dev_id != -1) {
    // This op only runs on one specific device.
    CreateComputationalOp(result, node, op_dev_id);
    for (ir::Node *n : node->outputs) {
      sharded_var_device_.emplace(n->Name(), op_dev_id);
    }
    return true;
  }
  return false;
}

void ReduceSSAGraphBuilder::InsertPostprocessOps(ir::Graph *result) const {
  if (UseGPU()) {
    if (strategy_.fuse_broadcast_op_) {
      CreateFusedBroadcastOp(result, bcast_var_name_set_);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set_.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set_[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(result, bcast_name, dev_id);
        }
Y
Yancey1989 已提交
639 640
      }
    }
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
  }
}

int ReduceSSAGraphBuilder::GetOpDeviceID(
    ir::Node *node,
    std::unordered_map<std::string, std::vector<ir::Node *>> *delay_ops) const {
  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
    return -1;
  }

  auto param_grad = boost::get<std::vector<std::string>>(
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1]);

  if (dev_id == -1) {
    (*delay_ops)[param_grad[1]].push_back(node);
    return -2;
  }
  return dev_id;
}

std::vector<ir::Node *> ReduceSSAGraphBuilder::SortOperations(
    const ir::Graph &graph) const {
  std::vector<ir::Node *> sorted_ops = ir::TopologySortOperations(graph);
  return SortForReduceMode(sorted_ops);
}

std::vector<ir::Node *> ReduceSSAGraphBuilder::SortForReduceMode(
    const std::vector<ir::Node *> &topo_ops) const {
  std::vector<ir::Node *> sorted_ops;
  std::unordered_map<std::string, std::vector<ir::Node *>> delayed_op;
  sorted_ops.reserve(topo_ops.size());
  ResetState();

  auto insert_delayed_op = [&](const std::string &var_name, int dev_id) {
    sharded_var_device_.emplace(var_name, dev_id);
    if (delayed_op.count(var_name)) {
      auto &ops = delayed_op.at(var_name);
      sorted_ops.insert(sorted_ops.end(), ops.begin(), ops.end());
      delayed_op.at(var_name).clear();
Y
Yancey1989 已提交
683
    }
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
  };

  for (ir::Node *node : topo_ops) {
    int op_dev_id = GetOpDeviceID(node, &delayed_op);
    if (op_dev_id > -1) {
      // This op only runs on one specific device.
      sorted_ops.emplace_back(node);
      for (ir::Node *n : node->outputs) {
        insert_delayed_op(n->Name(), op_dev_id);
      }
    } else if (op_dev_id == -1) {
      // This op runs on all devices, and its output may have parameter's
      // gradients.
      sorted_ops.emplace_back(node);
      bool is_bk_op =
          static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                OpProtoAndCheckerMaker::OpRoleAttrName())) &
                            static_cast<int>(OpRole::kBackward));
      if (!is_bk_op) continue;
      // Currently, we assume that once gradient is generated, it can be
      // broadcast, and each gradient is only broadcast once.
      std::vector<std::string> backward_vars;
      try {
        backward_vars =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      } catch (boost::bad_get e) {
      }
      PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

      for (size_t i = 0; i < backward_vars.size(); i += 2) {
        auto &g_name = backward_vars[i + 1];
        size_t cur_device_id = GetAppropriateDeviceID({g_name});
        insert_delayed_op(g_name, static_cast<int>(cur_device_id));
      }
    } else if (op_dev_id == -2) {
      // The Op on which the Op depends has not yet been generated.
Y
yi.wu 已提交
721
    }
Y
Yancey1989 已提交
722 723
  }

724
  PADDLE_ENFORCE_EQ(sorted_ops.size(), topo_ops.size());
Y
Yancey1989 已提交
725

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
  ResetState();
  return sorted_ops;
}

void DistSSAGraphBuilder::Init() const {
  MultiDevSSAGraphBuilderBase::Init();
  ResetState();
}

void DistSSAGraphBuilder::ResetState() const {
  BalanceVarSSAGraphBuilder::ResetState();
  bcast_var_name_set_.clear();
  bcast_var_name_set_.resize(places_.size());
}

bool DistSSAGraphBuilder::DealWithSpecialOp(ir::Graph *result,
                                            ir::Node *node) const {
  bool insert_op = false;
  if (OpHaveRole(*node, OpRole::kRPC)) {
    int op_dev_id = CreateRPCOp(result, node);
    PADDLE_ENFORCE(op_dev_id != -1,
                   "Can not schedule the RPC operator to the right place.");
    if (node->Op()->Type() == "recv") {
      auto recv_vars_attr =
          boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
              OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE(recv_vars_attr.size() == 2UL);  // [parameter, gradient]
      if (recv_vars_attr[0].find(".block") == std::string::npos) {
        bcast_var_name_set_[op_dev_id].emplace(recv_vars_attr[0]);
      }
    }
    insert_op = true;
    need_broadcast_var_ = true;
  } else if (OpHaveRole(*node, OpRole::kDist)) {
    int op_dev_id = CreateDistTrainOp(result, node);
    if (node->Op()->Type() == "concat") {
      auto origin_param_name = node->Op()->OutputArgumentNames()[0];
      bcast_var_name_set_[op_dev_id].emplace(origin_param_name);
    }
    insert_op = true;
  } else {
    int op_dev_id = GetOpDeviceID(node);
    if (op_dev_id != -1) {  // This op only runs on one specific device.
      CreateComputationalOp(result, node, op_dev_id);
      for (ir::Node *n : node->outputs) {
        sharded_var_device_.emplace(n->Name(), op_dev_id);
      }
      insert_op = true;
    }
  }
  return insert_op;
W
Wu Yi 已提交
777 778 779
}

void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
X
clean1  
Xin Pan 已提交
780
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
781 782 783 784 785 786
  for (ir::Node *input : node->inputs) {
    VarHandle *var = nullptr;
    for (int place_offset = 0; place_offset < num_places; ++place_offset) {
      auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
      auto &var_holder = var_holders[input->Name()];
      if (!var_holder.empty()) {
X
clean1  
Xin Pan 已提交
787
        var = *var_holder.rbegin();
W
Wu Yi 已提交
788 789 790
        op_handle->AddInput(var);
      }
    }
Y
Yancey1989 已提交
791 792 793
  }
}

794
// Create RPC related op handles that connects its in ops and out ops.
795
int DistSSAGraphBuilder::CreateRPCOp(ir::Graph *result, ir::Node *node) const {
Y
Yancey1989 已提交
796
  int op_dev_id = -1;
797
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
798
    // TODO(paddle-dev): getting the first var is not safe.
799
    op_dev_id = GetVarDeviceID(node->inputs[0]->Name());
X
Xin Pan 已提交
800 801
    PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
                   "This hack no longer holds, please fix.");
Y
Yancey1989 已提交
802 803 804
    // the variable name which contains .block means it was splited by
    // split_byref op
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
805
        node->inputs[0]->Name().find(".block") == std::string::npos) {
806 807
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
808
        input_var_names.push_back(n->Name());
809
      }
W
Wu Yi 已提交
810 811 812 813
      auto send_param_grad = boost::get<std::vector<std::string>>(
          node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
      op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
M
minqiyang 已提交
814 815
      VLOG(10) << "send grad " << input_var_names[0] << " origin "
               << send_param_grad[1] << " place: " << op_dev_id;
816
      for (auto &varname : input_var_names) {
817
        sharded_var_device_.emplace(varname, op_dev_id);
Y
Yancey1989 已提交
818
      }
819
      sharded_var_device_.emplace(send_param_grad[1], op_dev_id);
Y
Yancey1989 已提交
820
    }
821 822 823
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
824
      output_var_names.push_back(n->Name());
825
    }
W
Wu Yi 已提交
826 827 828
    auto recv_param_grad = boost::get<std::vector<std::string>>(
        node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
    if (recv_param_grad.size() == 2U) {
829
      op_dev_id = GetVarDeviceID(recv_param_grad[1]);
M
minqiyang 已提交
830 831 832
      VLOG(10) << "recv param " << recv_param_grad[0]
               << " get grad place: " << recv_param_grad[1]
               << " place: " << op_dev_id;
W
Wu Yi 已提交
833 834 835
    } else {
      op_dev_id = GetAppropriateDeviceID(output_var_names);
    }
836
    for (auto &varname : output_var_names) {
837
      sharded_var_device_.emplace(varname, op_dev_id);
Y
Yancey1989 已提交
838 839
    }
  } else {
W
Wu Yi 已提交
840
    // send_barrier, fetch_barrier will run on place 0;
Y
Yancey1989 已提交
841 842 843 844
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
845
                 node->Op()->Type());
X
Xin Pan 已提交
846
  result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
847 848
      result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
      node->Op()->Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
849

W
Wu Yi 已提交
850 851
  if (node->Op()->Type() == "send") {
    CreateOpHandleIOs(result, node, op_dev_id);
Y
Yancey1989 已提交
852
  } else {
W
Wu Yi 已提交
853 854 855
    // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
    // all places
    auto p = places_[op_dev_id];
X
clean1  
Xin Pan 已提交
856
    auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
857 858
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
Y
Yancey1989 已提交
859

W
Wu Yi 已提交
860 861 862 863
    SetOpInputsAllPlaces(result, node, places_.size());
    for (ir::Node *output : node->outputs) {
      int outvar_dev_id = op_dev_id;
      if (node->Op()->Type() == "fetch_barrier") {
864
        outvar_dev_id = GetVarDeviceID(output->Name());
Q
Qiao Longfei 已提交
865
        PADDLE_ENFORCE_NE(outvar_dev_id, -1, "output name %s", output->Name());
W
Wu Yi 已提交
866 867 868 869 870 871 872 873 874 875 876 877
      }
      p = places_[outvar_dev_id];
      ir::Node *new_node = nullptr;
      if (output->Var()) {
        new_node = result->CreateVarNode(output->Var());
      } else {
        new_node =
            result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
      }
      CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
    }
  }
Y
Yancey1989 已提交
878
  return op_dev_id;
Y
Yu Yang 已提交
879 880
}

881 882 883 884 885 886 887
int DistSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
                                           ir::Node *node) const {
  int op_dev_id = -1;
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
    input_var_names.push_back(input->Name());
C
chengduo 已提交
888
  }
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
  for (ir::Node *output : node->outputs) {
    output_var_names.push_back(output->Name());
  }

  if (node->Op()->Type() == "split_byref" ||
      node->Op()->Type() == "split_selected_rows" ||
      node->Op()->Type() == "split_ids") {
    // TODO(paddle-dev): getting the first var is not safe.
    op_dev_id = GetVarDeviceID(input_var_names[0]);
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
        sharded_var_device_.emplace(varname, op_dev_id);
      }
    }
    for (auto &varname : output_var_names) {
      sharded_var_device_.emplace(varname, op_dev_id);
    }
  } else if (node->Op()->Type() == "concat") {
    op_dev_id = GetVarDeviceID(input_var_names[0]);
    for (auto &varname : output_var_names) {
      sharded_var_device_.emplace(varname, op_dev_id);
    }
  } else {
    LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
    PADDLE_THROW(
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());

  CreateComputationalOp(result, node, op_dev_id);
  return op_dev_id;
C
chengduo 已提交
925 926
}

Y
Yancey1989 已提交
927
void DistSSAGraphBuilder::InsertCollectiveOp(ir::Graph *result,
928 929 930 931 932 933 934 935 936 937 938 939 940 941
                                             const std::string &p_name,
                                             const std::string &g_name) const {
  size_t cur_device_id = 0;
  switch (strategy_.reduce_) {
    case BuildStrategy::ReduceStrategy::kReduce:
      cur_device_id = GetAppropriateDeviceID({g_name});
      CreateReduceOp(result, g_name, cur_device_id);
      sharded_var_device_.emplace(g_name, cur_device_id);
      break;
    case BuildStrategy::ReduceStrategy::kAllReduce:
      if (IsSparseGradient(g_name)) {
        CreateReduceOp(result, g_name, 0);
        CreateBroadcastOp(result, g_name, 0);
      } else {
Y
Yancey1989 已提交
942
        CreateAllReduceOp(result, g_name);
943 944 945 946 947 948 949 950 951
      }
      break;
    default:
      LOG(FATAL) << "Unknown reduce strategy.";
      break;
  }
}

void DistSSAGraphBuilder::InsertPostprocessOps(ir::Graph *result) const {
952 953
  // broad cast received parameters when training in parameter server mode.
  if (need_broadcast_var_) {
Q
Qiao Longfei 已提交
954 955 956 957 958 959 960 961
    // There are 4 conditions:
    // 1. GPU && Reduce: Reduce gradient then broadcast gradient to other GPUS.
    // Need to broadcast received parameters to other GPU.
    // 2. GPU && AllReduce: AllReduce all graident to each GPU. Need to
    // broadcast received parameters to other GPU.
    // 3. CPU && AllReduce: AllReduce all gradient to each thread. Need to
    // broadcast received parameters to other scope.
    // 4. CPU && Reduce: because all parameters share the same memory, did not
Q
Qiao Longfei 已提交
962
    // broadcast received parameters.
963
    if (!UseGPU() &&
Q
Qiao Longfei 已提交
964
        strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
965 966
      return;
    }
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
    if (strategy_.fuse_broadcast_op_) {
      CreateFusedBroadcastOp(result, bcast_var_name_set_);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set_.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set_[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(result, bcast_name, dev_id);
        }
      }
    }
  }
}

std::unordered_set<std::string> &MultiDevSSAGraphBuilder() {
  static std::unordered_set<std::string> regs;
  return regs;
Y
Yu Yang 已提交
983
}
984 985 986 987 988 989

static int MultiDevSSAGraphBuilderRegister(const std::string &builder_mode) {
  MultiDevSSAGraphBuilder().insert(builder_mode);
  return 0;
}

Y
Yu Yang 已提交
990 991 992
}  // namespace details
}  // namespace framework
}  // namespace paddle
X
Xin Pan 已提交
993

994 995 996 997 998 999 1000 1001 1002 1003 1004
#define REGISTER_MULTI_DEVICES_PASS(pass_name, pass_class)                     \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                              \
      _reg_ssa_graph_builder_##pass_name,                                      \
      "REGISTER_MULTI_DEVICES_PASS must be called in global namespace.");      \
  int _reg_ssa_graph_builder_entry_##pass_name =                               \
      paddle::framework::details::MultiDevSSAGraphBuilderRegister(#pass_name); \
  REGISTER_PASS(pass_name, pass_class)                                         \
      .RequirePassAttr(paddle::framework::details::kLossVarName)               \
      .RequirePassAttr(paddle::framework::details::kPlaces)                    \
      .RequirePassAttr(paddle::framework::details::kLocalScopes)               \
      .RequirePassAttr(paddle::framework::details::kStrategy)                  \
Y
Yancey1989 已提交
1005
      .RequirePassAttr(paddle::framework::details::kNRanks)
1006 1007 1008 1009 1010 1011 1012 1013

REGISTER_MULTI_DEVICES_PASS(reduce_mode_multi_devices_pass,
                            paddle::framework::details::ReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(
    allreduce_mode_multi_devices_pass,
    paddle::framework::details::AllReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(dist_multi_devices_pass,
                            paddle::framework::details::DistSSAGraphBuilder);