fused_gemm_epilogue.h 38.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

18 19 20 21
#include <algorithm>
#include <mutex>
#include <unordered_map>

22 23
#ifdef PADDLE_WITH_CUDA

24 25
#include <cuda_runtime_api.h>  // NOLINT
#include "cuda.h"              // NOLINT
26 27

#if CUDA_VERSION >= 11060
28

29
#include "gflags/gflags.h"
30
#include "glog/logging.h"
31
#include "paddle/phi/backends/all_context.h"
32
#include "paddle/phi/backends/dynload/cublasLt.h"
33 34
#include "paddle/phi/backends/gpu/cuda/cuda_helper.h"
#include "paddle/phi/common/amp_type_traits.h"
35 36
#include "paddle/phi/common/float16.h"
#include "paddle/phi/common/memory_utils.h"
37
#include "paddle/phi/core/dense_tensor.h"
38 39
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/scope_guard.h"
40
#include "paddle/phi/kernels/funcs/blas/blaslt_impl.cu.h"
41
#include "paddle/utils/optional.h"
42 43 44

DECLARE_int64(cublaslt_exhaustive_search_times);

45 46
namespace phi {
namespace funcs {
47 48 49

class GemmEpilogueAlgoCache {
 public:
50
  static GemmEpilogueAlgoCache& Instance() {
51 52 53 54 55
    static GemmEpilogueAlgoCache instance(
        FLAGS_cublaslt_exhaustive_search_times);
    return instance;
  }

56 57
  GemmEpilogueAlgoCache(GemmEpilogueAlgoCache const&) = delete;
  void operator=(GemmEpilogueAlgoCache const&) = delete;
58

59
  cublasLtMatmulAlgo_t* GetGemmAlgo(cublasLtHandle_t lt_handle,
60 61 62 63
                                    cublasLtMatmulDesc_t op_desc,
                                    cublasLtMatrixLayout_t a_desc,
                                    cublasLtMatrixLayout_t b_desc,
                                    cublasLtMatrixLayout_t c_desc,
64 65 66 67 68
                                    const void* alpha,
                                    const void* beta,
                                    const void* a,
                                    const void* b,
                                    void* c,
69
                                    cudaStream_t stream,
70
                                    void* workspace,
71
                                    size_t workspace_size) {
72 73
    if (search_times_ <= 0) return nullptr;

74 75 76 77 78 79 80 81 82 83 84
    int64_t seed = 0;
    std::hash<int64_t> hash_fn;

    HashMatmulDesc_(op_desc, &seed, hash_fn);
    HashMatrixLayoutDesc_(a_desc, &seed, hash_fn);
    HashMatrixLayoutDesc_(b_desc, &seed, hash_fn);
    HashMatrixLayoutDesc_(c_desc, &seed, hash_fn);

    cublasLtMatmulAlgo_t ret;
    {
      std::lock_guard<std::mutex> lock(cache_mutex_);
85
      auto it = map_.find(seed);
86
      if (it != map_.end()) {
87
        return &(it->second);
88 89 90
      }
    }

91 92
    cublasLtMatmulPreference_t preference;
    PADDLE_ENFORCE_GPU_SUCCESS(
93
        phi::dynload::cublasLtMatmulPreferenceCreate(&preference));
94
    PADDLE_ENFORCE_GPU_SUCCESS(
95
        phi::dynload::cublasLtMatmulPreferenceSetAttribute(
96 97 98 99
            preference,
            CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
            &workspace_size,
            sizeof(workspace_size)));
100 101 102 103 104

    int returned_results = 0;
    std::vector<cublasLtMatmulHeuristicResult_t> heuristic_results(
        requested_algo_count_);
    PADDLE_ENFORCE_GPU_SUCCESS(
105 106 107 108 109 110 111 112 113 114
        phi::dynload::cublasLtMatmulAlgoGetHeuristic(lt_handle,
                                                     op_desc,
                                                     a_desc,
                                                     b_desc,
                                                     c_desc,
                                                     c_desc,
                                                     preference,
                                                     requested_algo_count_,
                                                     heuristic_results.data(),
                                                     &returned_results));
115 116

    PADDLE_ENFORCE_GT(
117 118
        returned_results,
        0,
119
        phi::errors::Unavailable("No GEMM epilogue algorithm support!"));
120 121

    PADDLE_ENFORCE_GPU_SUCCESS(
122
        phi::dynload::cublasLtMatmulPreferenceDestroy(preference));
123 124 125 126 127 128 129

    int best_algo_idx = -1;
    float best_algo_time = 0;

    // Run 100 times for warmup
    int warmup_algo_idx = 0;
    for (int t = 0; t < 100; t++) {
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
      cublasStatus_t status =
          phi::dynload::cublasLtMatmul(lt_handle,
                                       op_desc,
                                       alpha,
                                       a,
                                       a_desc,
                                       b,
                                       b_desc,
                                       beta,
                                       c,
                                       c_desc,
                                       c,
                                       c_desc,
                                       &heuristic_results[warmup_algo_idx].algo,
                                       workspace,
                                       workspace_size,
                                       stream);
147 148 149 150
      if (status != CUBLAS_STATUS_SUCCESS) {
        t = -1;
        warmup_algo_idx += 1;
        if (warmup_algo_idx == requested_algo_count_) {
151 152
          PADDLE_THROW(
              phi::errors::Unavailable("No GEMM epilogue algorithm support!"));
153
        }
154 155
      }
    }
156

157 158 159 160 161 162 163 164 165 166
    cudaEvent_t start_event, stop_event;
    PADDLE_ENFORCE_GPU_SUCCESS(cudaEventCreate(&start_event));
    PADDLE_ENFORCE_GPU_SUCCESS(cudaEventCreate(&stop_event));

    for (int algo_idx = 0; algo_idx < returned_results; ++algo_idx) {
      float curr_time = 0;
      for (int check_idx = 0; check_idx < search_times_; check_idx++) {
        float time = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(cudaEventRecord(start_event, stream));

167
        cublasStatus_t status =
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
            phi::dynload::cublasLtMatmul(lt_handle,
                                         op_desc,
                                         alpha,
                                         a,
                                         a_desc,
                                         b,
                                         b_desc,
                                         beta,
                                         c,
                                         c_desc,
                                         c,
                                         c_desc,
                                         &heuristic_results[algo_idx].algo,
                                         workspace,
                                         workspace_size,
                                         stream);
184 185 186 187 188 189 190 191 192

        PADDLE_ENFORCE_GPU_SUCCESS(cudaEventRecord(stop_event, stream));
        PADDLE_ENFORCE_GPU_SUCCESS(cudaEventSynchronize(stop_event));
        PADDLE_ENFORCE_GPU_SUCCESS(
            cudaEventElapsedTime(&time, start_event, stop_event));
        curr_time += time;
        if (status != CUBLAS_STATUS_SUCCESS) {
          curr_time = 3.40282e+038;  // Max Value of float
          break;
193 194 195
        }
      }

196 197 198 199 200
      curr_time = curr_time / search_times_;
      if (curr_time < best_algo_time || algo_idx == 0) {
        best_algo_idx = algo_idx;
        best_algo_time = curr_time;
      }
201 202
    }

203 204 205 206 207
    PADDLE_ENFORCE_GPU_SUCCESS(cudaEventDestroy(start_event));
    PADDLE_ENFORCE_GPU_SUCCESS(cudaEventDestroy(stop_event));

    if (best_algo_idx == -1) {
      PADDLE_THROW(
208
          phi::errors::Unavailable("No GEMM epilogue algorithm support!"));
209 210 211 212 213 214
    }

    ret = heuristic_results[best_algo_idx].algo;

    VLOG(4) << "Search time:" << search_times_ << ", hash-key (" << seed
            << ") not found in GemmEpilogueAlgoCache";
215

216
    std::lock_guard<std::mutex> lock(cache_mutex_);
217
    auto& algo_in_map = map_[seed];
218 219
    algo_in_map = ret;
    return &algo_in_map;
220 221 222 223 224 225 226 227 228 229 230 231
  }

 private:
  explicit GemmEpilogueAlgoCache(int search_times)
      : search_times_(search_times) {
    map_.clear();
  }
  std::unordered_map<int64_t, cublasLtMatmulAlgo_t> map_;
  int search_times_;
  const int requested_algo_count_ = 10;
  std::mutex cache_mutex_;

232
  void HashMatmulDesc_(cublasLtMatmulDesc_t desc,
233 234
                       int64_t* seed,
                       const std::hash<int64_t>& hash_fn) {
235 236 237 238
    size_t size_to_write;
    int trans_a, trans_b;
    uint32_t epilogue;

239 240 241 242 243 244
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescGetAttribute(
        desc,
        CUBLASLT_MATMUL_DESC_TRANSA,
        &trans_a,
        sizeof(trans_a),
        &size_to_write));
245 246
    HashValue_(seed, hash_fn, static_cast<int64_t>(trans_a));

247 248 249 250 251 252
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescGetAttribute(
        desc,
        CUBLASLT_MATMUL_DESC_TRANSB,
        &trans_b,
        sizeof(trans_b),
        &size_to_write));
253 254
    HashValue_(seed, hash_fn, static_cast<int64_t>(trans_b));

255 256 257 258 259 260
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescGetAttribute(
        desc,
        CUBLASLT_MATMUL_DESC_EPILOGUE,
        &epilogue,
        sizeof(epilogue),
        &size_to_write));
261 262 263
    HashValue_(seed, hash_fn, static_cast<int64_t>(epilogue));
  }

264
  void HashMatrixLayoutDesc_(cublasLtMatrixLayout_t desc,
265 266
                             int64_t* seed,
                             const std::hash<int64_t>& hash_fn) {
267 268 269 270 271 272
    size_t size_to_write;
    uint32_t dtype;
    int32_t batch;
    uint64_t row, col;
    int64_t ld, batch_offset;

273 274 275 276 277 278
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutGetAttribute(
        desc,
        CUBLASLT_MATRIX_LAYOUT_TYPE,
        &dtype,
        sizeof(dtype),
        &size_to_write));
279 280
    HashValue_(seed, hash_fn, static_cast<int64_t>(dtype));

281 282 283 284 285 286
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutGetAttribute(
        desc,
        CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT,
        &batch,
        sizeof(batch),
        &size_to_write));
287 288
    HashValue_(seed, hash_fn, static_cast<int64_t>(batch));

289 290
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutGetAttribute(
        desc, CUBLASLT_MATRIX_LAYOUT_ROWS, &row, sizeof(row), &size_to_write));
291 292
    HashValue_(seed, hash_fn, static_cast<int64_t>(row));

293 294
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutGetAttribute(
        desc, CUBLASLT_MATRIX_LAYOUT_COLS, &col, sizeof(col), &size_to_write));
295 296
    HashValue_(seed, hash_fn, static_cast<int64_t>(col));

297 298
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutGetAttribute(
        desc, CUBLASLT_MATRIX_LAYOUT_LD, &ld, sizeof(ld), &size_to_write));
299 300
    HashValue_(seed, hash_fn, static_cast<int64_t>(ld));

301 302 303 304 305 306
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutGetAttribute(
        desc,
        CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET,
        &batch_offset,
        sizeof(batch_offset),
        &size_to_write));
307 308 309
    HashValue_(seed, hash_fn, static_cast<int64_t>(batch_offset));
  }

310 311
  void HashValue_(int64_t* seed,
                  const std::hash<int64_t>& hash_fn,
312 313 314 315 316
                  int64_t value) {
    *seed ^= hash_fn(value) + 0x9e3779b9 + (*seed << 6) + (*seed >> 2);
  }
};

317 318 319 320 321 322 323 324 325 326 327
static cublasLtEpilogue_t GetEpilogueType(const std::string& activation,
                                          bool enable_auxiliary) {
  if (activation == "relu") {
    return enable_auxiliary ? CUBLASLT_EPILOGUE_RELU_AUX_BIAS
                            : CUBLASLT_EPILOGUE_RELU_BIAS;
  } else if (activation == "gelu") {
    return enable_auxiliary ? CUBLASLT_EPILOGUE_GELU_AUX_BIAS
                            : CUBLASLT_EPILOGUE_GELU_BIAS;
  } else if (activation == "none") {
    return CUBLASLT_EPILOGUE_BIAS;
  } else {
328
    PADDLE_THROW(phi::errors::InvalidArgument(
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        "The activation attribute of fused_gemm_epilogue op should be"
        " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
        "But received activation=%s.",
        activation));
  }
}

template <typename T>
void ComputeFusedGemmEpilogueForward(const phi::GPUContext& dev_ctx,
                                     const phi::DenseTensor* x,
                                     const phi::DenseTensor* y,
                                     const phi::DenseTensor* bias,
                                     int64_t M,
                                     int64_t N,
                                     int64_t K,
                                     bool trans_x,
                                     bool trans_y,
                                     const std::string& activation,
                                     phi::DenseTensor* out,
                                     phi::DenseTensor* reserve_space) {
  using MT = typename phi::dtype::MPTypeTrait<T>::Type;

  VLOG(6) << "x.shape={" << x->dims() << "}, y.shape={" << y->dims()
          << "}, out.shape={" << out->dims() << "}, M=" << M << ", N=" << N
          << ", K=" << K << ", trans_x=" << trans_x << ", trans_y=" << trans_y
          << ", activation=" << activation
          << ", reserve_space=" << reserve_space;

  bool enable_auxiliary = reserve_space == nullptr ? false : true;
  auto* out_data = out->data<T>();

  cudaDataType_t mat_type = phi::backends::gpu::ToCudaDataType<T>();
  cudaDataType_t scale_type = phi::backends::gpu::ToCudaDataType<MT>();
  cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
  if (std::is_same<T, double>::value) {
    compute_type = CUBLAS_COMPUTE_64F;
  }

  cublasLtMatmulDesc_t operation_desc = NULL;
368
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescCreate(
369 370 371
      &operation_desc, compute_type, scale_type));
  cublasOperation_t transx = trans_x ? CUBLAS_OP_T : CUBLAS_OP_N;
  cublasOperation_t transy = trans_y ? CUBLAS_OP_T : CUBLAS_OP_N;
372
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
373
      operation_desc, CUBLASLT_MATMUL_DESC_TRANSB, &transx, sizeof(transx)));
374
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
375 376 377 378
      operation_desc, CUBLASLT_MATMUL_DESC_TRANSA, &transy, sizeof(transy)));

  cublasLtEpilogue_t epiloque_func =
      GetEpilogueType(activation, enable_auxiliary);
379
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
380 381 382 383 384
      operation_desc,
      CUBLASLT_MATMUL_DESC_EPILOGUE,
      &epiloque_func,
      sizeof(epiloque_func)));
  const T* bias_data = bias->data<T>();
385
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
      operation_desc,
      CUBLASLT_MATMUL_DESC_BIAS_POINTER,
      &bias_data,
      sizeof(bias_data)));

  if (enable_auxiliary && activation != "none") {
    // Note (Ming Huang): The initialization of ReseveSpace is happened in the
    // dev_ctx.Alloc. Therefore, we set real date type up here.
    if (activation == "relu") {
      phi::DataType rs_type = phi::DataType::BOOL;
      size_t reserve_space_size =
          phi::product(reserve_space->dims()) * SizeOf(rs_type);
      dev_ctx.Alloc(reserve_space, rs_type, reserve_space_size);
    } else {
      size_t reserve_space_size =
          phi::product(reserve_space->dims()) * sizeof(T);
      dev_ctx.Alloc<T>(reserve_space, reserve_space_size);
    }

    void* aux_data = reserve_space->data();

407 408 409 410 411
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        operation_desc,
        CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
        &aux_data,
        sizeof(aux_data)));
412
    int64_t aux_ld = N;
413 414 415 416 417
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        operation_desc,
        CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD,
        &aux_ld,
        sizeof(aux_ld)));
418 419 420 421
  }

  cublasLtMatrixLayout_t x_desc = NULL, y_desc = NULL, out_desc = NULL;
  if (trans_x) {
422 423
    PADDLE_ENFORCE_GPU_SUCCESS(
        phi::dynload::cublasLtMatrixLayoutCreate(&x_desc, mat_type, M, K, M));
424
  } else {
425 426
    PADDLE_ENFORCE_GPU_SUCCESS(
        phi::dynload::cublasLtMatrixLayoutCreate(&x_desc, mat_type, K, M, K));
427 428
  }
  if (trans_y) {
429 430
    PADDLE_ENFORCE_GPU_SUCCESS(
        phi::dynload::cublasLtMatrixLayoutCreate(&y_desc, mat_type, K, N, K));
431
  } else {
432 433
    PADDLE_ENFORCE_GPU_SUCCESS(
        phi::dynload::cublasLtMatrixLayoutCreate(&y_desc, mat_type, N, K, N));
434
  }
435 436
  PADDLE_ENFORCE_GPU_SUCCESS(
      phi::dynload::cublasLtMatrixLayoutCreate(&out_desc, mat_type, N, M, N));
437 438 439 440 441 442

  cublasLtHandle_t lt_handle = dev_ctx.cublaslt_handle();
  // NOTE(zengjinle): I do not know whether the 4MB workspace size is
  // "enough". I just followed the settings from the NVIDIA MLPerf BERT code.
  size_t workspace_size = static_cast<size_t>(4) * 1024 * 1024;
  cudaStream_t stream = dev_ctx.stream();
443
  auto workspace = memory_utils::Alloc(
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
      dev_ctx.GetPlace(),
      workspace_size,
      phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));

  MT alpha = static_cast<MT>(1);
  MT beta = static_cast<MT>(0);

  const auto* y_data = y->data<T>();
  const auto* x_data = x->data<T>();

  auto algo = GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                            operation_desc,
                                                            y_desc,
                                                            x_desc,
                                                            out_desc,
                                                            &alpha,
                                                            &beta,
                                                            y_data,
                                                            x_data,
                                                            out_data,
                                                            stream,
                                                            workspace->ptr(),
                                                            workspace_size);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmul(lt_handle,
                                                          operation_desc,
                                                          &alpha,
                                                          y_data,
                                                          y_desc,
                                                          x_data,
                                                          x_desc,
                                                          &beta,
                                                          out_data,
                                                          out_desc,
                                                          out_data,
                                                          out_desc,
                                                          algo,
                                                          workspace->ptr(),
                                                          workspace_size,
                                                          stream));
483 484

  PADDLE_ENFORCE_GPU_SUCCESS(
485 486 487
      phi::dynload::cublasLtMatmulDescDestroy(operation_desc));
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutDestroy(y_desc));
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutDestroy(x_desc));
488
  PADDLE_ENFORCE_GPU_SUCCESS(
489
      phi::dynload::cublasLtMatrixLayoutDestroy(out_desc));
490 491
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
struct BwdFusedEpilogueSetter {
 public:
  static phi::funcs::MatmulFusedType SetForDx(
      const std::string& activation_grad) {
    if (activation_grad == "none") {
      return kMatmulGrad;
    } else if (activation_grad == "relu_grad") {
      return kMatmulReluGrad;
    } else if (activation_grad == "gelu_grad") {
      return kMatmulGeluGrad;
    } else {
      PADDLE_THROW(phi::errors::InvalidArgument(
          "Fued linear epilogue type should be one of {none, relu, gelu}."
          "But received activation is %s, please check",
          activation_grad));
    }
  }
509

510 511 512 513 514 515 516 517 518 519
  template <typename DYT, bool TransY>
  static phi::funcs::MatmulFusedType SetForDy(const phi::GPUContext& dev_ctx,
                                              phi::DenseTensor* dbias) {
    if (dbias != nullptr) {
      dev_ctx.Alloc<DYT>(dbias, dbias->numel() * sizeof(DYT));
      return TransY ? kMatmulBiasGradToB : kMatmulBiasGradToA;
    } else {
      return kMatmulGradWithoutBias;
    }
  }
520 521
};

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
template <typename T, typename DXT, typename DYT, bool TransX, bool TransY>
void ComputeFusedGemmEpilogueBackwardImpl(const phi::GPUContext& dev_ctx,
                                          const phi::DenseTensor* dout,
                                          const phi::DenseTensor* x,
                                          const phi::DenseTensor* y,
                                          const phi::DenseTensor* reserve_space,
                                          int64_t M,
                                          int64_t N,
                                          int64_t K,
                                          const std::string activation_grad,
                                          phi::DenseTensor* dx,
                                          phi::DenseTensor* dy,
                                          phi::DenseTensor* dbias,
                                          bool use_addto_dx,
                                          bool use_addto_dy) {
  using MT = typename phi::dtype::MPTypeTrait<T>::Type;
538 539 540 541 542
  constexpr bool kIsValidDataType =
      (std::is_same<DXT, T>::value || std::is_same<DXT, MT>::value) &&
      (std::is_same<DYT, T>::value || std::is_same<DYT, MT>::value);
  static_assert(kIsValidDataType, "Invalid data type");

543
  using Trait = FusedGEMMGradTrait<TransX, TransY>;
544

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
  if (dx) {
    constexpr auto kXGradAIsDZ = (Trait::kXGradA == FusedGEMMGradInType::kDZ);
    auto fused_type = BwdFusedEpilogueSetter::SetForDx(activation_grad);
    void* reserve_data = (fused_type == kMatmulGrad)
                             ? nullptr
                             : const_cast<void*>(reserve_space->data());
    dev_ctx.Alloc<DXT>(dx, dx->numel() * sizeof(DXT));
    phi::funcs::LinearGradWithCublasLt<T, DXT, DYT, TransX, TransY>::Run(
        dev_ctx,
        dout,
        y,
        dx,
        nullptr,
        reserve_data,
        M,
        N,
        K,
        fused_type,
        Trait::kXGradATrans,
        Trait::kXGradBTrans,
        use_addto_dx,
        kXGradAIsDZ);
  }
  if (dy) {
    auto fused_type =
        BwdFusedEpilogueSetter::SetForDy<DYT, TransY>(dev_ctx, dbias);
    constexpr auto kYGradAIsDZ = (Trait::kYGradA == FusedGEMMGradInType::kDZ);
    // Caution: DYT is in front of DXT in this template arguments.
    dev_ctx.Alloc<DYT>(dy, dy->numel() * sizeof(DYT));
    phi::funcs::LinearGradWithCublasLt<T, DXT, DYT, TransX, TransY>::Run(
        dev_ctx,
        dout,
        x,
        dy,
        dbias ? static_cast<const void*>(dbias->data<DYT>()) : nullptr,
        nullptr,
        M,
        N,
        K,
        fused_type,
        Trait::kYGradATrans,
        Trait::kYGradBTrans,
        use_addto_dy,
        kYGradAIsDZ,
        /*is_dx=*/false);
  }
}
592 593 594 595 596 597 598

static constexpr auto BoolToCuBlasEnum(bool transpose) {
  return transpose ? CUBLAS_OP_T : CUBLAS_OP_N;
}

static cublasLtEpilogue_t GetEpilogueGradType(
    const std::string& activation_grad) {
599 600 601
  if (activation_grad == "none") {
    return CUBLASLT_EPILOGUE_DEFAULT;
  } else if (activation_grad == "relu_grad") {
602 603 604 605
    return CUBLASLT_EPILOGUE_DRELU;
  } else if (activation_grad == "gelu_grad") {
    return CUBLASLT_EPILOGUE_DGELU;
  } else {
606
    PADDLE_THROW(phi::errors::InvalidArgument(
607 608 609 610 611 612 613
        "The activation_grad attribute of fused_gemm_epilogue op should "
        "be one of {\"none\", \"relu\", \"gelu\"}. But received %s."
        "But received activation_grad=%s.",
        activation_grad));
  }
}

614
template <typename T, typename DXT, typename DYT, bool TransX, bool TransY>
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
void ComputeFusedGemmEpilogueBackwardImplDev(
    const phi::GPUContext& dev_ctx,
    const phi::DenseTensor* dout,
    const phi::DenseTensor* x,
    const phi::DenseTensor* y,
    const phi::DenseTensor* reserve_space,
    int64_t M,
    int64_t N,
    int64_t K,
    const std::string activation_grad,
    phi::DenseTensor* dx,
    phi::DenseTensor* dy,
    phi::DenseTensor* dbias,
    bool use_addto_dx,
    bool use_addto_dy) {
630
  using MT = typename phi::dtype::MPTypeTrait<T>::Type;
S
sneaxiy 已提交
631 632 633 634
  constexpr bool kIsValidDataType =
      (std::is_same<DXT, T>::value || std::is_same<DXT, MT>::value) &&
      (std::is_same<DYT, T>::value || std::is_same<DYT, MT>::value);
  static_assert(kIsValidDataType, "Invalid data type");
635

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
  using Trait = FusedGEMMGradTrait<TransX, TransY>;

  cudaDataType_t mat_type = phi::backends::gpu::ToCudaDataType<T>();
  cudaDataType_t scale_type = phi::backends::gpu::ToCudaDataType<MT>();
  cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
  if (std::is_same<T, double>::value) {
    compute_type = CUBLAS_COMPUTE_64F;
  }

  cublasLtHandle_t lt_handle = dev_ctx.cublaslt_handle();
  // NOTE(zengjinle): I do not know whether the 4MB workspace size is
  // "enough". I just followed the settings from the NVIDIA MLPerf BERT code.
  size_t workspace_size = static_cast<size_t>(4) * 1024 * 1024;
  const cublasLtMatmulAlgo_t* algo = nullptr;
  cudaStream_t stream = dev_ctx.stream();

  MT alpha = static_cast<MT>(1.0);
653 654
  MT beta_dx = use_addto_dx ? static_cast<MT>(1.0) : static_cast<MT>(0.0);
  MT beta_dy = use_addto_dy ? static_cast<MT>(1.0) : static_cast<MT>(0.0);
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

  cublasLtMatrixLayout_t dout_desc = nullptr, dout_trans_desc = nullptr;
  cublasLtMatrixLayout_t x_desc = nullptr, x_trans_desc = nullptr;
  cublasLtMatrixLayout_t y_desc = nullptr, y_trans_desc = nullptr;
  cublasLtMatrixLayout_t dx_desc = nullptr, dy_desc = nullptr;
  cublasLtMatmulDesc_t dx_operation_desc = nullptr, dy_operation_desc = nullptr;

  DEFINE_PADDLE_SCOPE_GUARD([&] {
    auto descs = {dout_desc,
                  dout_trans_desc,
                  x_desc,
                  x_trans_desc,
                  y_desc,
                  y_trans_desc,
                  dx_desc,
                  dy_desc};
    for (auto desc : descs) {
      if (desc) {
        PADDLE_ENFORCE_GPU_SUCCESS(
674
            phi::dynload::cublasLtMatrixLayoutDestroy(desc));
675 676 677 678 679
      }
    }

    if (dx_operation_desc) {
      PADDLE_ENFORCE_GPU_SUCCESS(
680
          phi::dynload::cublasLtMatmulDescDestroy(dx_operation_desc));
681 682 683 684
    }

    if (dy_operation_desc) {
      PADDLE_ENFORCE_GPU_SUCCESS(
685
          phi::dynload::cublasLtMatmulDescDestroy(dy_operation_desc));
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
    }
  });

  auto x_row = TransX ? K : M;
  auto x_col = TransX ? M : K;
  auto y_row = TransY ? N : K;
  auto y_col = TransY ? K : N;
  auto z_row = TransX ? N : M;
  auto z_col = TransX ? M : N;

  // dx = func(dout, y)
  if (dx) {
    constexpr auto kXGradAIsDZ = (Trait::kXGradA == FusedGEMMGradInType::kDZ);
    cublasLtMatrixLayout_t *dx_dout_desc, *dx_y_desc;

    if (TransX) {
      dx_dout_desc = &dout_trans_desc;
703
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
704 705 706
          dx_dout_desc, mat_type, z_row, z_col, z_row));
    } else {
      dx_dout_desc = &dout_desc;
707
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
708 709 710 711
          dx_dout_desc, mat_type, z_col, z_row, z_col));
    }

    dx_y_desc = &y_trans_desc;
712
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
713 714 715 716 717 718 719
        dx_y_desc, mat_type, y_col, y_row, y_col));

    auto& a_desc = kXGradAIsDZ ? (*dx_dout_desc) : (*dx_y_desc);
    auto& b_desc = kXGradAIsDZ ? (*dx_y_desc) : (*dx_dout_desc);
    auto a_trans = BoolToCuBlasEnum(Trait::kXGradATrans);
    auto b_trans = BoolToCuBlasEnum(Trait::kXGradBTrans);

720
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
721 722 723 724 725
        &dx_desc,
        phi::backends::gpu::ToCudaDataType<DXT>(),
        x_col,
        x_row,
        x_col));
726

727
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescCreate(
728
        &dx_operation_desc, compute_type, scale_type));
729 730 731 732 733 734 735 736 737 738
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        dx_operation_desc,
        CUBLASLT_MATMUL_DESC_TRANSB,
        &a_trans,
        sizeof(a_trans)));
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        dx_operation_desc,
        CUBLASLT_MATMUL_DESC_TRANSA,
        &b_trans,
        sizeof(b_trans)));
739 740 741

    cublasLtEpilogue_t epiloque_func_for_dx =
        GetEpilogueGradType(activation_grad);
742 743 744 745 746
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        dx_operation_desc,
        CUBLASLT_MATMUL_DESC_EPILOGUE,
        &epiloque_func_for_dx,
        sizeof(epiloque_func_for_dx)));
747 748 749

    if (activation_grad != "none") {
      auto* aux_data = reserve_space->data();
750 751 752 753 754
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
          dx_operation_desc,
          CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
          &aux_data,
          sizeof(aux_data)));
755
      int64_t aux_ld = TransX ? M : K;
756 757 758 759 760
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
          dx_operation_desc,
          CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD,
          &aux_ld,
          sizeof(aux_ld)));
761 762
    }

763
    auto dx_workspace = memory_utils::Alloc(
764 765 766 767
        dev_ctx.GetPlace(),
        workspace_size,
        phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));

768
    auto* dx_data = dev_ctx.Alloc<DXT>(dx, dx->numel() * sizeof(DXT));
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
    const auto* y_data = y->data<T>();
    const auto* dout_data = dout->data<T>();
    const auto* a_data = kXGradAIsDZ ? dout_data : y_data;
    const auto* b_data = kXGradAIsDZ ? y_data : dout_data;

    auto algo =
        GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                      dx_operation_desc,
                                                      b_desc,
                                                      a_desc,
                                                      dx_desc,
                                                      &alpha,
                                                      &beta_dx,
                                                      b_data,
                                                      a_data,
                                                      dx_data,
                                                      stream,
                                                      dx_workspace->ptr(),
                                                      workspace_size);

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmul(lt_handle,
                                                            dx_operation_desc,
                                                            &alpha,
                                                            b_data,
                                                            b_desc,
                                                            a_data,
                                                            a_desc,
                                                            &beta_dx,
                                                            dx_data,
                                                            dx_desc,
                                                            dx_data,
                                                            dx_desc,
                                                            algo,
                                                            dx_workspace->ptr(),
                                                            workspace_size,
                                                            stream));
805 806 807 808 809 810 811 812 813 814
  }

  // dy = func(dout, x)
  if (dy) {
    constexpr auto kYGradAIsDZ = (Trait::kYGradA == FusedGEMMGradInType::kDZ);

    cublasLtMatrixLayout_t *dy_dout_desc = nullptr, *dy_x_desc = nullptr;
    if (TransX) {
      dy_dout_desc = &dout_trans_desc;
      if (dout_trans_desc == nullptr) {
815 816
        PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
            dy_dout_desc, mat_type, z_row, z_col, z_row));
817 818 819 820
      }
    } else {
      dy_dout_desc = &dout_desc;
      if (dout_desc == nullptr) {
821 822
        PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
            dy_dout_desc, mat_type, z_col, z_row, z_col));
823 824 825 826
      }
    }

    dy_x_desc = &x_trans_desc;
827
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
828 829 830 831 832 833 834
        dy_x_desc, mat_type, x_col, x_row, x_col));

    auto& a_desc = kYGradAIsDZ ? (*dy_dout_desc) : (*dy_x_desc);
    auto& b_desc = kYGradAIsDZ ? (*dy_x_desc) : (*dy_dout_desc);
    auto a_trans = BoolToCuBlasEnum(Trait::kYGradATrans);
    auto b_trans = BoolToCuBlasEnum(Trait::kYGradBTrans);

835
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
836 837 838 839 840
        &dy_desc,
        phi::backends::gpu::ToCudaDataType<DYT>(),
        y_col,
        y_row,
        y_col));
841

842
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescCreate(
843 844
        &dy_operation_desc, compute_type, scale_type));

845 846 847 848 849 850 851 852 853 854
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        dy_operation_desc,
        CUBLASLT_MATMUL_DESC_TRANSB,
        &a_trans,
        sizeof(a_trans)));
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        dy_operation_desc,
        CUBLASLT_MATMUL_DESC_TRANSA,
        &b_trans,
        sizeof(b_trans)));
855 856 857 858 859 860 861 862 863 864 865 866

    cublasLtEpilogue_t epiloque_func_for_dy;
    if (dbias == nullptr) {
      epiloque_func_for_dy = CUBLASLT_EPILOGUE_DEFAULT;
    } else {
      if (TransY) {
        epiloque_func_for_dy = CUBLASLT_EPILOGUE_BGRADB;
      } else {
        epiloque_func_for_dy = CUBLASLT_EPILOGUE_BGRADA;
      }
    }

867 868 869 870 871
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        dy_operation_desc,
        CUBLASLT_MATMUL_DESC_EPILOGUE,
        &epiloque_func_for_dy,
        sizeof(epiloque_func_for_dy)));
872 873

    if (dbias) {
874 875
      auto* dbias_data =
          dev_ctx.Alloc<DYT>(dbias, dbias->numel() * sizeof(DYT));
876 877 878 879 880
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
          dy_operation_desc,
          CUBLASLT_MATMUL_DESC_BIAS_POINTER,
          &dbias_data,
          sizeof(dbias_data)));
881 882
    }

883
    auto dy_workspace = memory_utils::Alloc(
884 885 886
        dev_ctx.GetPlace(),
        workspace_size,
        phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
887
    auto* dy_data = dev_ctx.Alloc<DYT>(dy, dy->numel() * sizeof(DYT));
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
    const auto* dout_data = dout->data<T>();
    const auto* x_data = x->data<T>();
    const auto* a_data = kYGradAIsDZ ? dout_data : x_data;
    const auto* b_data = kYGradAIsDZ ? x_data : dout_data;

    auto algo =
        GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                      dy_operation_desc,
                                                      b_desc,
                                                      a_desc,
                                                      dy_desc,
                                                      &alpha,
                                                      &beta_dy,
                                                      b_data,
                                                      a_data,
                                                      dy_data,
                                                      stream,
                                                      dy_workspace->ptr(),
                                                      workspace_size);

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmul(lt_handle,
                                                            dy_operation_desc,
                                                            &alpha,
                                                            b_data,
                                                            b_desc,
                                                            a_data,
                                                            a_desc,
                                                            &beta_dy,
                                                            dy_data,
                                                            dy_desc,
                                                            dy_data,
                                                            dy_desc,
                                                            algo,
                                                            dy_workspace->ptr(),
                                                            workspace_size,
                                                            stream));
924 925 926
  }
}

927
template <typename T, typename DXT = T, typename DYT = T>
928 929 930 931 932 933 934 935 936 937 938 939 940 941
void ComputeFusedGemmEpilogueBackward(const phi::GPUContext& dev_ctx,
                                      const phi::DenseTensor* dout,
                                      const phi::DenseTensor* x,
                                      const phi::DenseTensor* y,
                                      const phi::DenseTensor* reserve_space,
                                      int64_t M,
                                      int64_t N,
                                      int64_t K,
                                      bool trans_x,
                                      bool trans_y,
                                      const std::string& activation_grad,
                                      phi::DenseTensor* dx,
                                      phi::DenseTensor* dy,
                                      phi::DenseTensor* dbias,
942 943
                                      bool use_addto_dx = false,
                                      bool use_addto_dy = false) {
944 945 946 947 948 949
  VLOG(10) << "M=" << M << ", K=" << K << ", N=" << N << ", trans_x=" << trans_x
           << ", trans_y=" << trans_y
           << ", activation_grad=" << activation_grad;

  if (trans_x) {
    if (trans_y) {
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
      ComputeFusedGemmEpilogueBackwardImpl<T, DXT, DYT, true, true>(
          dev_ctx,
          dout,
          x,
          y,
          reserve_space,
          M,
          N,
          K,
          activation_grad,
          dx,
          dy,
          dbias,
          use_addto_dx,
          use_addto_dy);
965
    } else {
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
      ComputeFusedGemmEpilogueBackwardImpl<T, DXT, DYT, true, false>(
          dev_ctx,
          dout,
          x,
          y,
          reserve_space,
          M,
          N,
          K,
          activation_grad,
          dx,
          dy,
          dbias,
          use_addto_dx,
          use_addto_dy);
981 982 983
    }
  } else {
    if (trans_y) {
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
      ComputeFusedGemmEpilogueBackwardImpl<T, DXT, DYT, false, true>(
          dev_ctx,
          dout,
          x,
          y,
          reserve_space,
          M,
          N,
          K,
          activation_grad,
          dx,
          dy,
          dbias,
          use_addto_dx,
          use_addto_dy);
999
    } else {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
      ComputeFusedGemmEpilogueBackwardImpl<T, DXT, DYT, false, false>(
          dev_ctx,
          dout,
          x,
          y,
          reserve_space,
          M,
          N,
          K,
          activation_grad,
          dx,
          dy,
          dbias,
          use_addto_dx,
          use_addto_dy);
1015 1016 1017 1018
    }
  }
}

1019 1020
}  // namespace funcs
}  // namespace phi
1021
#endif
1022
#endif