fused_gemm_epilogue.h 37.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

18 19 20 21
#include <algorithm>
#include <mutex>
#include <unordered_map>

22 23
#ifdef PADDLE_WITH_CUDA

24 25
#include <cuda_runtime_api.h>  // NOLINT
#include "cuda.h"              // NOLINT
26 27

#if CUDA_VERSION >= 11060
28

29
#include "gflags/gflags.h"
30
#include "paddle/phi/backends/all_context.h"
31
#include "paddle/phi/backends/dynload/cublasLt.h"
32 33
#include "paddle/phi/backends/gpu/cuda/cuda_helper.h"
#include "paddle/phi/common/amp_type_traits.h"
34 35
#include "paddle/phi/common/float16.h"
#include "paddle/phi/common/memory_utils.h"
36
#include "paddle/phi/core/dense_tensor.h"
37 38
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/scope_guard.h"
39
#include "paddle/utils/optional.h"
40 41 42

DECLARE_int64(cublaslt_exhaustive_search_times);

43 44
namespace phi {
namespace funcs {
45 46 47

class GemmEpilogueAlgoCache {
 public:
48
  static GemmEpilogueAlgoCache& Instance() {
49 50 51 52 53
    static GemmEpilogueAlgoCache instance(
        FLAGS_cublaslt_exhaustive_search_times);
    return instance;
  }

54 55
  GemmEpilogueAlgoCache(GemmEpilogueAlgoCache const&) = delete;
  void operator=(GemmEpilogueAlgoCache const&) = delete;
56

57
  cublasLtMatmulAlgo_t* GetGemmAlgo(cublasLtHandle_t lt_handle,
58 59 60 61
                                    cublasLtMatmulDesc_t op_desc,
                                    cublasLtMatrixLayout_t a_desc,
                                    cublasLtMatrixLayout_t b_desc,
                                    cublasLtMatrixLayout_t c_desc,
62 63 64 65 66
                                    const void* alpha,
                                    const void* beta,
                                    const void* a,
                                    const void* b,
                                    void* c,
67
                                    cudaStream_t stream,
68
                                    void* workspace,
69
                                    size_t workspace_size) {
70 71
    if (search_times_ <= 0) return nullptr;

72 73 74 75 76 77 78 79 80 81 82
    int64_t seed = 0;
    std::hash<int64_t> hash_fn;

    HashMatmulDesc_(op_desc, &seed, hash_fn);
    HashMatrixLayoutDesc_(a_desc, &seed, hash_fn);
    HashMatrixLayoutDesc_(b_desc, &seed, hash_fn);
    HashMatrixLayoutDesc_(c_desc, &seed, hash_fn);

    cublasLtMatmulAlgo_t ret;
    {
      std::lock_guard<std::mutex> lock(cache_mutex_);
83
      auto it = map_.find(seed);
84
      if (it != map_.end()) {
85
        return &(it->second);
86 87 88
      }
    }

89 90
    cublasLtMatmulPreference_t preference;
    PADDLE_ENFORCE_GPU_SUCCESS(
91
        phi::dynload::cublasLtMatmulPreferenceCreate(&preference));
92
    PADDLE_ENFORCE_GPU_SUCCESS(
93
        phi::dynload::cublasLtMatmulPreferenceSetAttribute(
94 95 96 97
            preference,
            CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
            &workspace_size,
            sizeof(workspace_size)));
98 99 100 101 102

    int returned_results = 0;
    std::vector<cublasLtMatmulHeuristicResult_t> heuristic_results(
        requested_algo_count_);
    PADDLE_ENFORCE_GPU_SUCCESS(
103 104 105 106 107 108 109 110 111 112
        phi::dynload::cublasLtMatmulAlgoGetHeuristic(lt_handle,
                                                     op_desc,
                                                     a_desc,
                                                     b_desc,
                                                     c_desc,
                                                     c_desc,
                                                     preference,
                                                     requested_algo_count_,
                                                     heuristic_results.data(),
                                                     &returned_results));
113 114

    PADDLE_ENFORCE_GT(
115 116
        returned_results,
        0,
117
        phi::errors::Unavailable("No GEMM epilogue algorithm support!"));
118 119

    PADDLE_ENFORCE_GPU_SUCCESS(
120
        phi::dynload::cublasLtMatmulPreferenceDestroy(preference));
121 122 123 124 125 126 127

    int best_algo_idx = -1;
    float best_algo_time = 0;

    // Run 100 times for warmup
    int warmup_algo_idx = 0;
    for (int t = 0; t < 100; t++) {
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
      cublasStatus_t status =
          phi::dynload::cublasLtMatmul(lt_handle,
                                       op_desc,
                                       alpha,
                                       a,
                                       a_desc,
                                       b,
                                       b_desc,
                                       beta,
                                       c,
                                       c_desc,
                                       c,
                                       c_desc,
                                       &heuristic_results[warmup_algo_idx].algo,
                                       workspace,
                                       workspace_size,
                                       stream);
145 146 147 148
      if (status != CUBLAS_STATUS_SUCCESS) {
        t = -1;
        warmup_algo_idx += 1;
        if (warmup_algo_idx == requested_algo_count_) {
149 150
          PADDLE_THROW(
              phi::errors::Unavailable("No GEMM epilogue algorithm support!"));
151
        }
152 153
      }
    }
154

155 156 157 158 159 160 161 162 163 164
    cudaEvent_t start_event, stop_event;
    PADDLE_ENFORCE_GPU_SUCCESS(cudaEventCreate(&start_event));
    PADDLE_ENFORCE_GPU_SUCCESS(cudaEventCreate(&stop_event));

    for (int algo_idx = 0; algo_idx < returned_results; ++algo_idx) {
      float curr_time = 0;
      for (int check_idx = 0; check_idx < search_times_; check_idx++) {
        float time = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(cudaEventRecord(start_event, stream));

165
        cublasStatus_t status =
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
            phi::dynload::cublasLtMatmul(lt_handle,
                                         op_desc,
                                         alpha,
                                         a,
                                         a_desc,
                                         b,
                                         b_desc,
                                         beta,
                                         c,
                                         c_desc,
                                         c,
                                         c_desc,
                                         &heuristic_results[algo_idx].algo,
                                         workspace,
                                         workspace_size,
                                         stream);
182 183 184 185 186 187 188 189 190

        PADDLE_ENFORCE_GPU_SUCCESS(cudaEventRecord(stop_event, stream));
        PADDLE_ENFORCE_GPU_SUCCESS(cudaEventSynchronize(stop_event));
        PADDLE_ENFORCE_GPU_SUCCESS(
            cudaEventElapsedTime(&time, start_event, stop_event));
        curr_time += time;
        if (status != CUBLAS_STATUS_SUCCESS) {
          curr_time = 3.40282e+038;  // Max Value of float
          break;
191 192 193
        }
      }

194 195 196 197 198
      curr_time = curr_time / search_times_;
      if (curr_time < best_algo_time || algo_idx == 0) {
        best_algo_idx = algo_idx;
        best_algo_time = curr_time;
      }
199 200
    }

201 202 203 204 205
    PADDLE_ENFORCE_GPU_SUCCESS(cudaEventDestroy(start_event));
    PADDLE_ENFORCE_GPU_SUCCESS(cudaEventDestroy(stop_event));

    if (best_algo_idx == -1) {
      PADDLE_THROW(
206
          phi::errors::Unavailable("No GEMM epilogue algorithm support!"));
207 208 209 210 211 212
    }

    ret = heuristic_results[best_algo_idx].algo;

    VLOG(4) << "Search time:" << search_times_ << ", hash-key (" << seed
            << ") not found in GemmEpilogueAlgoCache";
213

214
    std::lock_guard<std::mutex> lock(cache_mutex_);
215
    auto& algo_in_map = map_[seed];
216 217
    algo_in_map = ret;
    return &algo_in_map;
218 219 220 221 222 223 224 225 226 227 228 229
  }

 private:
  explicit GemmEpilogueAlgoCache(int search_times)
      : search_times_(search_times) {
    map_.clear();
  }
  std::unordered_map<int64_t, cublasLtMatmulAlgo_t> map_;
  int search_times_;
  const int requested_algo_count_ = 10;
  std::mutex cache_mutex_;

230
  void HashMatmulDesc_(cublasLtMatmulDesc_t desc,
231 232
                       int64_t* seed,
                       const std::hash<int64_t>& hash_fn) {
233 234 235 236
    size_t size_to_write;
    int trans_a, trans_b;
    uint32_t epilogue;

237 238 239 240 241 242
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescGetAttribute(
        desc,
        CUBLASLT_MATMUL_DESC_TRANSA,
        &trans_a,
        sizeof(trans_a),
        &size_to_write));
243 244
    HashValue_(seed, hash_fn, static_cast<int64_t>(trans_a));

245 246 247 248 249 250
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescGetAttribute(
        desc,
        CUBLASLT_MATMUL_DESC_TRANSB,
        &trans_b,
        sizeof(trans_b),
        &size_to_write));
251 252
    HashValue_(seed, hash_fn, static_cast<int64_t>(trans_b));

253 254 255 256 257 258
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescGetAttribute(
        desc,
        CUBLASLT_MATMUL_DESC_EPILOGUE,
        &epilogue,
        sizeof(epilogue),
        &size_to_write));
259 260 261
    HashValue_(seed, hash_fn, static_cast<int64_t>(epilogue));
  }

262
  void HashMatrixLayoutDesc_(cublasLtMatrixLayout_t desc,
263 264
                             int64_t* seed,
                             const std::hash<int64_t>& hash_fn) {
265 266 267 268 269 270
    size_t size_to_write;
    uint32_t dtype;
    int32_t batch;
    uint64_t row, col;
    int64_t ld, batch_offset;

271 272 273 274 275 276
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutGetAttribute(
        desc,
        CUBLASLT_MATRIX_LAYOUT_TYPE,
        &dtype,
        sizeof(dtype),
        &size_to_write));
277 278
    HashValue_(seed, hash_fn, static_cast<int64_t>(dtype));

279 280 281 282 283 284
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutGetAttribute(
        desc,
        CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT,
        &batch,
        sizeof(batch),
        &size_to_write));
285 286
    HashValue_(seed, hash_fn, static_cast<int64_t>(batch));

287 288
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutGetAttribute(
        desc, CUBLASLT_MATRIX_LAYOUT_ROWS, &row, sizeof(row), &size_to_write));
289 290
    HashValue_(seed, hash_fn, static_cast<int64_t>(row));

291 292
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutGetAttribute(
        desc, CUBLASLT_MATRIX_LAYOUT_COLS, &col, sizeof(col), &size_to_write));
293 294
    HashValue_(seed, hash_fn, static_cast<int64_t>(col));

295 296
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutGetAttribute(
        desc, CUBLASLT_MATRIX_LAYOUT_LD, &ld, sizeof(ld), &size_to_write));
297 298
    HashValue_(seed, hash_fn, static_cast<int64_t>(ld));

299 300 301 302 303 304
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutGetAttribute(
        desc,
        CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET,
        &batch_offset,
        sizeof(batch_offset),
        &size_to_write));
305 306 307
    HashValue_(seed, hash_fn, static_cast<int64_t>(batch_offset));
  }

308 309
  void HashValue_(int64_t* seed,
                  const std::hash<int64_t>& hash_fn,
310 311 312 313 314
                  int64_t value) {
    *seed ^= hash_fn(value) + 0x9e3779b9 + (*seed << 6) + (*seed >> 2);
  }
};

315 316 317 318 319 320 321 322 323 324 325
static cublasLtEpilogue_t GetEpilogueType(const std::string& activation,
                                          bool enable_auxiliary) {
  if (activation == "relu") {
    return enable_auxiliary ? CUBLASLT_EPILOGUE_RELU_AUX_BIAS
                            : CUBLASLT_EPILOGUE_RELU_BIAS;
  } else if (activation == "gelu") {
    return enable_auxiliary ? CUBLASLT_EPILOGUE_GELU_AUX_BIAS
                            : CUBLASLT_EPILOGUE_GELU_BIAS;
  } else if (activation == "none") {
    return CUBLASLT_EPILOGUE_BIAS;
  } else {
326
    PADDLE_THROW(phi::errors::InvalidArgument(
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        "The activation attribute of fused_gemm_epilogue op should be"
        " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
        "But received activation=%s.",
        activation));
  }
}

template <typename T>
void ComputeFusedGemmEpilogueForward(const phi::GPUContext& dev_ctx,
                                     const phi::DenseTensor* x,
                                     const phi::DenseTensor* y,
                                     const phi::DenseTensor* bias,
                                     int64_t M,
                                     int64_t N,
                                     int64_t K,
                                     bool trans_x,
                                     bool trans_y,
                                     const std::string& activation,
                                     phi::DenseTensor* out,
                                     phi::DenseTensor* reserve_space) {
  using MT = typename phi::dtype::MPTypeTrait<T>::Type;

  VLOG(6) << "x.shape={" << x->dims() << "}, y.shape={" << y->dims()
          << "}, out.shape={" << out->dims() << "}, M=" << M << ", N=" << N
          << ", K=" << K << ", trans_x=" << trans_x << ", trans_y=" << trans_y
          << ", activation=" << activation
          << ", reserve_space=" << reserve_space;

  bool enable_auxiliary = reserve_space == nullptr ? false : true;
  auto* out_data = out->data<T>();

  cudaDataType_t mat_type = phi::backends::gpu::ToCudaDataType<T>();
  cudaDataType_t scale_type = phi::backends::gpu::ToCudaDataType<MT>();
  cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
  if (std::is_same<T, double>::value) {
    compute_type = CUBLAS_COMPUTE_64F;
  }

  cublasLtMatmulDesc_t operation_desc = NULL;
366
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescCreate(
367 368 369
      &operation_desc, compute_type, scale_type));
  cublasOperation_t transx = trans_x ? CUBLAS_OP_T : CUBLAS_OP_N;
  cublasOperation_t transy = trans_y ? CUBLAS_OP_T : CUBLAS_OP_N;
370
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
371
      operation_desc, CUBLASLT_MATMUL_DESC_TRANSB, &transx, sizeof(transx)));
372
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
373 374 375 376
      operation_desc, CUBLASLT_MATMUL_DESC_TRANSA, &transy, sizeof(transy)));

  cublasLtEpilogue_t epiloque_func =
      GetEpilogueType(activation, enable_auxiliary);
377
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
378 379 380 381 382
      operation_desc,
      CUBLASLT_MATMUL_DESC_EPILOGUE,
      &epiloque_func,
      sizeof(epiloque_func)));
  const T* bias_data = bias->data<T>();
383
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
      operation_desc,
      CUBLASLT_MATMUL_DESC_BIAS_POINTER,
      &bias_data,
      sizeof(bias_data)));

  if (enable_auxiliary && activation != "none") {
    // Note (Ming Huang): The initialization of ReseveSpace is happened in the
    // dev_ctx.Alloc. Therefore, we set real date type up here.
    if (activation == "relu") {
      phi::DataType rs_type = phi::DataType::BOOL;
      size_t reserve_space_size =
          phi::product(reserve_space->dims()) * SizeOf(rs_type);
      dev_ctx.Alloc(reserve_space, rs_type, reserve_space_size);
    } else {
      size_t reserve_space_size =
          phi::product(reserve_space->dims()) * sizeof(T);
      dev_ctx.Alloc<T>(reserve_space, reserve_space_size);
    }

    void* aux_data = reserve_space->data();

405 406 407 408 409
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        operation_desc,
        CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
        &aux_data,
        sizeof(aux_data)));
410
    int64_t aux_ld = N;
411 412 413 414 415
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        operation_desc,
        CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD,
        &aux_ld,
        sizeof(aux_ld)));
416 417 418 419
  }

  cublasLtMatrixLayout_t x_desc = NULL, y_desc = NULL, out_desc = NULL;
  if (trans_x) {
420 421
    PADDLE_ENFORCE_GPU_SUCCESS(
        phi::dynload::cublasLtMatrixLayoutCreate(&x_desc, mat_type, M, K, M));
422
  } else {
423 424
    PADDLE_ENFORCE_GPU_SUCCESS(
        phi::dynload::cublasLtMatrixLayoutCreate(&x_desc, mat_type, K, M, K));
425 426
  }
  if (trans_y) {
427 428
    PADDLE_ENFORCE_GPU_SUCCESS(
        phi::dynload::cublasLtMatrixLayoutCreate(&y_desc, mat_type, K, N, K));
429
  } else {
430 431
    PADDLE_ENFORCE_GPU_SUCCESS(
        phi::dynload::cublasLtMatrixLayoutCreate(&y_desc, mat_type, N, K, N));
432
  }
433 434
  PADDLE_ENFORCE_GPU_SUCCESS(
      phi::dynload::cublasLtMatrixLayoutCreate(&out_desc, mat_type, N, M, N));
435 436 437 438 439 440

  cublasLtHandle_t lt_handle = dev_ctx.cublaslt_handle();
  // NOTE(zengjinle): I do not know whether the 4MB workspace size is
  // "enough". I just followed the settings from the NVIDIA MLPerf BERT code.
  size_t workspace_size = static_cast<size_t>(4) * 1024 * 1024;
  cudaStream_t stream = dev_ctx.stream();
441
  auto workspace = memory_utils::Alloc(
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
      dev_ctx.GetPlace(),
      workspace_size,
      phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));

  MT alpha = static_cast<MT>(1);
  MT beta = static_cast<MT>(0);

  const auto* y_data = y->data<T>();
  const auto* x_data = x->data<T>();

  auto algo = GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                            operation_desc,
                                                            y_desc,
                                                            x_desc,
                                                            out_desc,
                                                            &alpha,
                                                            &beta,
                                                            y_data,
                                                            x_data,
                                                            out_data,
                                                            stream,
                                                            workspace->ptr(),
                                                            workspace_size);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmul(lt_handle,
                                                          operation_desc,
                                                          &alpha,
                                                          y_data,
                                                          y_desc,
                                                          x_data,
                                                          x_desc,
                                                          &beta,
                                                          out_data,
                                                          out_desc,
                                                          out_data,
                                                          out_desc,
                                                          algo,
                                                          workspace->ptr(),
                                                          workspace_size,
                                                          stream));
481 482

  PADDLE_ENFORCE_GPU_SUCCESS(
483 484 485
      phi::dynload::cublasLtMatmulDescDestroy(operation_desc));
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutDestroy(y_desc));
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutDestroy(x_desc));
486
  PADDLE_ENFORCE_GPU_SUCCESS(
487
      phi::dynload::cublasLtMatrixLayoutDestroy(out_desc));
488 489
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
enum FusedGEMMGradInType { kDX = 0, kDY = 1, kDZ = 2 };

template <bool TransX, bool TransY>
struct FusedGEMMGradTrait;

template <>
struct FusedGEMMGradTrait<false, false> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<true, false> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradATrans = false;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<false, true> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = false;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<true, true> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradATrans = true;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = true;
};

static constexpr auto BoolToCuBlasEnum(bool transpose) {
  return transpose ? CUBLAS_OP_T : CUBLAS_OP_N;
}

static cublasLtEpilogue_t GetEpilogueGradType(
    const std::string& activation_grad) {
553 554 555
  if (activation_grad == "none") {
    return CUBLASLT_EPILOGUE_DEFAULT;
  } else if (activation_grad == "relu_grad") {
556 557 558 559
    return CUBLASLT_EPILOGUE_DRELU;
  } else if (activation_grad == "gelu_grad") {
    return CUBLASLT_EPILOGUE_DGELU;
  } else {
560
    PADDLE_THROW(phi::errors::InvalidArgument(
561 562 563 564 565 566 567
        "The activation_grad attribute of fused_gemm_epilogue op should "
        "be one of {\"none\", \"relu\", \"gelu\"}. But received %s."
        "But received activation_grad=%s.",
        activation_grad));
  }
}

568
template <typename T, typename DXT, typename DYT, bool TransX, bool TransY>
569 570 571 572 573 574 575 576 577 578 579 580
void ComputeFusedGemmEpilogueBackwardImpl(const phi::GPUContext& dev_ctx,
                                          const phi::DenseTensor* dout,
                                          const phi::DenseTensor* x,
                                          const phi::DenseTensor* y,
                                          const phi::DenseTensor* reserve_space,
                                          int64_t M,
                                          int64_t N,
                                          int64_t K,
                                          const std::string activation_grad,
                                          phi::DenseTensor* dx,
                                          phi::DenseTensor* dy,
                                          phi::DenseTensor* dbias,
581 582
                                          bool use_addto_dx,
                                          bool use_addto_dy) {
583
  using MT = typename phi::dtype::MPTypeTrait<T>::Type;
584 585 586
  static_assert(std::is_same<DXT, T>::value || std::is_same<DXT, MT>::value);
  static_assert(std::is_same<DYT, T>::value || std::is_same<DYT, MT>::value);

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
  using Trait = FusedGEMMGradTrait<TransX, TransY>;

  cudaDataType_t mat_type = phi::backends::gpu::ToCudaDataType<T>();
  cudaDataType_t scale_type = phi::backends::gpu::ToCudaDataType<MT>();
  cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
  if (std::is_same<T, double>::value) {
    compute_type = CUBLAS_COMPUTE_64F;
  }

  cublasLtHandle_t lt_handle = dev_ctx.cublaslt_handle();
  // NOTE(zengjinle): I do not know whether the 4MB workspace size is
  // "enough". I just followed the settings from the NVIDIA MLPerf BERT code.
  size_t workspace_size = static_cast<size_t>(4) * 1024 * 1024;
  const cublasLtMatmulAlgo_t* algo = nullptr;
  cudaStream_t stream = dev_ctx.stream();

  MT alpha = static_cast<MT>(1.0);
604 605
  MT beta_dx = use_addto_dx ? static_cast<MT>(1.0) : static_cast<MT>(0.0);
  MT beta_dy = use_addto_dy ? static_cast<MT>(1.0) : static_cast<MT>(0.0);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624

  cublasLtMatrixLayout_t dout_desc = nullptr, dout_trans_desc = nullptr;
  cublasLtMatrixLayout_t x_desc = nullptr, x_trans_desc = nullptr;
  cublasLtMatrixLayout_t y_desc = nullptr, y_trans_desc = nullptr;
  cublasLtMatrixLayout_t dx_desc = nullptr, dy_desc = nullptr;
  cublasLtMatmulDesc_t dx_operation_desc = nullptr, dy_operation_desc = nullptr;

  DEFINE_PADDLE_SCOPE_GUARD([&] {
    auto descs = {dout_desc,
                  dout_trans_desc,
                  x_desc,
                  x_trans_desc,
                  y_desc,
                  y_trans_desc,
                  dx_desc,
                  dy_desc};
    for (auto desc : descs) {
      if (desc) {
        PADDLE_ENFORCE_GPU_SUCCESS(
625
            phi::dynload::cublasLtMatrixLayoutDestroy(desc));
626 627 628 629 630
      }
    }

    if (dx_operation_desc) {
      PADDLE_ENFORCE_GPU_SUCCESS(
631
          phi::dynload::cublasLtMatmulDescDestroy(dx_operation_desc));
632 633 634 635
    }

    if (dy_operation_desc) {
      PADDLE_ENFORCE_GPU_SUCCESS(
636
          phi::dynload::cublasLtMatmulDescDestroy(dy_operation_desc));
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    }
  });

  auto x_row = TransX ? K : M;
  auto x_col = TransX ? M : K;
  auto y_row = TransY ? N : K;
  auto y_col = TransY ? K : N;
  auto z_row = TransX ? N : M;
  auto z_col = TransX ? M : N;

  // dx = func(dout, y)
  if (dx) {
    constexpr auto kXGradAIsDZ = (Trait::kXGradA == FusedGEMMGradInType::kDZ);
    cublasLtMatrixLayout_t *dx_dout_desc, *dx_y_desc;

    if (TransX) {
      dx_dout_desc = &dout_trans_desc;
654
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
655 656 657
          dx_dout_desc, mat_type, z_row, z_col, z_row));
    } else {
      dx_dout_desc = &dout_desc;
658
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
659 660 661 662
          dx_dout_desc, mat_type, z_col, z_row, z_col));
    }

    dx_y_desc = &y_trans_desc;
663
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
664 665 666 667 668 669 670
        dx_y_desc, mat_type, y_col, y_row, y_col));

    auto& a_desc = kXGradAIsDZ ? (*dx_dout_desc) : (*dx_y_desc);
    auto& b_desc = kXGradAIsDZ ? (*dx_y_desc) : (*dx_dout_desc);
    auto a_trans = BoolToCuBlasEnum(Trait::kXGradATrans);
    auto b_trans = BoolToCuBlasEnum(Trait::kXGradBTrans);

671
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
672 673 674 675 676
        &dx_desc,
        phi::backends::gpu::ToCudaDataType<DXT>(),
        x_col,
        x_row,
        x_col));
677

678
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescCreate(
679
        &dx_operation_desc, compute_type, scale_type));
680 681 682 683 684 685 686 687 688 689
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        dx_operation_desc,
        CUBLASLT_MATMUL_DESC_TRANSB,
        &a_trans,
        sizeof(a_trans)));
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        dx_operation_desc,
        CUBLASLT_MATMUL_DESC_TRANSA,
        &b_trans,
        sizeof(b_trans)));
690 691 692

    cublasLtEpilogue_t epiloque_func_for_dx =
        GetEpilogueGradType(activation_grad);
693 694 695 696 697
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        dx_operation_desc,
        CUBLASLT_MATMUL_DESC_EPILOGUE,
        &epiloque_func_for_dx,
        sizeof(epiloque_func_for_dx)));
698 699 700

    if (activation_grad != "none") {
      auto* aux_data = reserve_space->data();
701 702 703 704 705
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
          dx_operation_desc,
          CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
          &aux_data,
          sizeof(aux_data)));
706
      int64_t aux_ld = TransX ? M : K;
707 708 709 710 711
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
          dx_operation_desc,
          CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD,
          &aux_ld,
          sizeof(aux_ld)));
712 713
    }

714
    auto dx_workspace = memory_utils::Alloc(
715 716 717 718
        dev_ctx.GetPlace(),
        workspace_size,
        phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));

719
    auto* dx_data = dev_ctx.Alloc<DXT>(dx, dx->numel() * sizeof(DXT));
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
    const auto* y_data = y->data<T>();
    const auto* dout_data = dout->data<T>();
    const auto* a_data = kXGradAIsDZ ? dout_data : y_data;
    const auto* b_data = kXGradAIsDZ ? y_data : dout_data;

    auto algo =
        GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                      dx_operation_desc,
                                                      b_desc,
                                                      a_desc,
                                                      dx_desc,
                                                      &alpha,
                                                      &beta_dx,
                                                      b_data,
                                                      a_data,
                                                      dx_data,
                                                      stream,
                                                      dx_workspace->ptr(),
                                                      workspace_size);

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmul(lt_handle,
                                                            dx_operation_desc,
                                                            &alpha,
                                                            b_data,
                                                            b_desc,
                                                            a_data,
                                                            a_desc,
                                                            &beta_dx,
                                                            dx_data,
                                                            dx_desc,
                                                            dx_data,
                                                            dx_desc,
                                                            algo,
                                                            dx_workspace->ptr(),
                                                            workspace_size,
                                                            stream));
756 757 758 759 760 761 762 763 764 765
  }

  // dy = func(dout, x)
  if (dy) {
    constexpr auto kYGradAIsDZ = (Trait::kYGradA == FusedGEMMGradInType::kDZ);

    cublasLtMatrixLayout_t *dy_dout_desc = nullptr, *dy_x_desc = nullptr;
    if (TransX) {
      dy_dout_desc = &dout_trans_desc;
      if (dout_trans_desc == nullptr) {
766 767
        PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
            dy_dout_desc, mat_type, z_row, z_col, z_row));
768 769 770 771
      }
    } else {
      dy_dout_desc = &dout_desc;
      if (dout_desc == nullptr) {
772 773
        PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
            dy_dout_desc, mat_type, z_col, z_row, z_col));
774 775 776 777
      }
    }

    dy_x_desc = &x_trans_desc;
778
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
779 780 781 782 783 784 785
        dy_x_desc, mat_type, x_col, x_row, x_col));

    auto& a_desc = kYGradAIsDZ ? (*dy_dout_desc) : (*dy_x_desc);
    auto& b_desc = kYGradAIsDZ ? (*dy_x_desc) : (*dy_dout_desc);
    auto a_trans = BoolToCuBlasEnum(Trait::kYGradATrans);
    auto b_trans = BoolToCuBlasEnum(Trait::kYGradBTrans);

786
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatrixLayoutCreate(
787 788 789 790 791
        &dy_desc,
        phi::backends::gpu::ToCudaDataType<DYT>(),
        y_col,
        y_row,
        y_col));
792

793
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescCreate(
794 795
        &dy_operation_desc, compute_type, scale_type));

796 797 798 799 800 801 802 803 804 805
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        dy_operation_desc,
        CUBLASLT_MATMUL_DESC_TRANSB,
        &a_trans,
        sizeof(a_trans)));
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        dy_operation_desc,
        CUBLASLT_MATMUL_DESC_TRANSA,
        &b_trans,
        sizeof(b_trans)));
806 807 808 809 810 811 812 813 814 815 816 817

    cublasLtEpilogue_t epiloque_func_for_dy;
    if (dbias == nullptr) {
      epiloque_func_for_dy = CUBLASLT_EPILOGUE_DEFAULT;
    } else {
      if (TransY) {
        epiloque_func_for_dy = CUBLASLT_EPILOGUE_BGRADB;
      } else {
        epiloque_func_for_dy = CUBLASLT_EPILOGUE_BGRADA;
      }
    }

818 819 820 821 822
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
        dy_operation_desc,
        CUBLASLT_MATMUL_DESC_EPILOGUE,
        &epiloque_func_for_dy,
        sizeof(epiloque_func_for_dy)));
823 824

    if (dbias) {
825 826
      auto* dbias_data =
          dev_ctx.Alloc<DYT>(dbias, dbias->numel() * sizeof(DYT));
827 828 829 830 831
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmulDescSetAttribute(
          dy_operation_desc,
          CUBLASLT_MATMUL_DESC_BIAS_POINTER,
          &dbias_data,
          sizeof(dbias_data)));
832 833
    }

834
    auto dy_workspace = memory_utils::Alloc(
835 836 837
        dev_ctx.GetPlace(),
        workspace_size,
        phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
838
    auto* dy_data = dev_ctx.Alloc<DYT>(dy, dy->numel() * sizeof(DYT));
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
    const auto* dout_data = dout->data<T>();
    const auto* x_data = x->data<T>();
    const auto* a_data = kYGradAIsDZ ? dout_data : x_data;
    const auto* b_data = kYGradAIsDZ ? x_data : dout_data;

    auto algo =
        GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                      dy_operation_desc,
                                                      b_desc,
                                                      a_desc,
                                                      dy_desc,
                                                      &alpha,
                                                      &beta_dy,
                                                      b_data,
                                                      a_data,
                                                      dy_data,
                                                      stream,
                                                      dy_workspace->ptr(),
                                                      workspace_size);

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasLtMatmul(lt_handle,
                                                            dy_operation_desc,
                                                            &alpha,
                                                            b_data,
                                                            b_desc,
                                                            a_data,
                                                            a_desc,
                                                            &beta_dy,
                                                            dy_data,
                                                            dy_desc,
                                                            dy_data,
                                                            dy_desc,
                                                            algo,
                                                            dy_workspace->ptr(),
                                                            workspace_size,
                                                            stream));
875 876 877
  }
}

878
template <typename T, typename DXT = T, typename DYT = T>
879 880 881 882 883 884 885 886 887 888 889 890 891 892
void ComputeFusedGemmEpilogueBackward(const phi::GPUContext& dev_ctx,
                                      const phi::DenseTensor* dout,
                                      const phi::DenseTensor* x,
                                      const phi::DenseTensor* y,
                                      const phi::DenseTensor* reserve_space,
                                      int64_t M,
                                      int64_t N,
                                      int64_t K,
                                      bool trans_x,
                                      bool trans_y,
                                      const std::string& activation_grad,
                                      phi::DenseTensor* dx,
                                      phi::DenseTensor* dy,
                                      phi::DenseTensor* dbias,
893 894
                                      bool use_addto_dx = false,
                                      bool use_addto_dy = false) {
895 896 897 898 899 900
  VLOG(10) << "M=" << M << ", K=" << K << ", N=" << N << ", trans_x=" << trans_x
           << ", trans_y=" << trans_y
           << ", activation_grad=" << activation_grad;

  if (trans_x) {
    if (trans_y) {
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
      ComputeFusedGemmEpilogueBackwardImpl<T, DXT, DYT, true, true>(
          dev_ctx,
          dout,
          x,
          y,
          reserve_space,
          M,
          N,
          K,
          activation_grad,
          dx,
          dy,
          dbias,
          use_addto_dx,
          use_addto_dy);
916
    } else {
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
      ComputeFusedGemmEpilogueBackwardImpl<T, DXT, DYT, true, false>(
          dev_ctx,
          dout,
          x,
          y,
          reserve_space,
          M,
          N,
          K,
          activation_grad,
          dx,
          dy,
          dbias,
          use_addto_dx,
          use_addto_dy);
932 933 934
    }
  } else {
    if (trans_y) {
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
      ComputeFusedGemmEpilogueBackwardImpl<T, DXT, DYT, false, true>(
          dev_ctx,
          dout,
          x,
          y,
          reserve_space,
          M,
          N,
          K,
          activation_grad,
          dx,
          dy,
          dbias,
          use_addto_dx,
          use_addto_dy);
950
    } else {
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
      ComputeFusedGemmEpilogueBackwardImpl<T, DXT, DYT, false, false>(
          dev_ctx,
          dout,
          x,
          y,
          reserve_space,
          M,
          N,
          K,
          activation_grad,
          dx,
          dy,
          dbias,
          use_addto_dx,
          use_addto_dy);
966 967 968 969
    }
  }
}

970 971
}  // namespace funcs
}  // namespace phi
972
#endif
973
#endif