matmul_op_xpu.cc 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU

#include <algorithm>
#include <utility>
#include <vector>
20

21 22 23 24 25
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/blas.h"

namespace paddle {
namespace operators {
T
taixiurong 已提交
26 27
using framework::Tensor;

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}

static framework::Tensor FoldInitDims(const framework::Tensor &input) {
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}
/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}

static void ReshapeTensorIntoMatrixSequence(
    framework::Tensor *x, const math::MatDescriptor &descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}
/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
static void ReshapeXYOutIntoMatrixSequence(framework::Tensor *x,
                                           framework::Tensor *y,
                                           framework::Tensor *out, bool trans_x,
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

T
taixiurong 已提交
101 102 103 104
template <typename T, typename FCT>
static void MatMulXPUFunction(const Tensor *x, const Tensor *y, Tensor *out,
                              bool trans_x, bool trans_y,
                              const paddle::framework::ExecutionContext &ctx) {
T
taixiurong 已提交
105
  using XPUType = typename XPUTypeTrait<T>::Type;
T
taixiurong 已提交
106 107 108 109
  const auto &x_dims = x->dims();
  const auto &y_dims = y->dims();
  auto &dev_ctx =
      ctx.template device_context<paddle::platform::XPUDeviceContext>();
110

T
taixiurong 已提交
111 112 113 114
  auto mat_dim_a =
      math::CreateMatrixDescriptor(RowMatrixFromVector(x_dims), 0, trans_x);
  auto mat_dim_b =
      math::CreateMatrixDescriptor(ColumnMatrixFromVector(y_dims), 0, trans_y);
115

T
taixiurong 已提交
116 117 118 119 120 121 122 123
  if (x_dims.size() == 3 && y_dims.size() <= 2) {
    // if transpose_X is true, the transpose cost much time
    if (!trans_x) {
      mat_dim_a.height_ *= mat_dim_a.batch_size_;
      mat_dim_a.batch_size_ = 0;
    } else {
      mat_dim_b.batch_size_ = mat_dim_a.batch_size_;
      mat_dim_b.height_ = mat_dim_b.height_ / mat_dim_b.batch_size_;
124
    }
T
taixiurong 已提交
125
  }
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

  if (mat_dim_a.width_ == mat_dim_b.height_) {
    if (mat_dim_a.batch_size_ == 0 && mat_dim_b.batch_size_ == 1) {
      mat_dim_a.batch_size_ = mat_dim_b.batch_size_ = 0;
    }
    if (mat_dim_a.batch_size_ == 1 && mat_dim_b.batch_size_ == 0) {
      mat_dim_a.batch_size_ = mat_dim_b.batch_size_ = 0;
    }
  }

  PADDLE_ENFORCE_EQ(mat_dim_a.width_, mat_dim_b.height_,
                    platform::errors::InvalidArgument(
                        "Shape mistake in matmul_op, the "
                        "first tensor width must be same as "
                        "second tensor height, but received "
                        "width:%d, height:%d x_dims = %s , y_dims = %s",
                        mat_dim_a.width_, mat_dim_b.height_,
                        x_dims.to_str().c_str(), y_dims.to_str().c_str()));
T
taixiurong 已提交
144 145 146 147 148
  PADDLE_ENFORCE_EQ(mat_dim_a.batch_size_, mat_dim_b.batch_size_,
                    platform::errors::InvalidArgument(
                        "Shape mistake in matmul_op, the two input"
                        "tensor batch_size must be same, but received first "
                        "tensor batch_size:%d, second "
149 150 151
                        "tensor batch_size:%d, x_dims = %s , y_dims = %s",
                        mat_dim_a.batch_size_, mat_dim_b.batch_size_,
                        x_dims.to_str().c_str(), y_dims.to_str().c_str()));
T
taixiurong 已提交
152

153
  float alpha = static_cast<T>(ctx.Attr<float>("alpha"));
154

155
  T *data_c = out->data<T>();
T
taixiurong 已提交
156 157 158
  int m = mat_dim_a.height_;
  int n = mat_dim_b.width_;
  int k = mat_dim_a.width_;
159 160
  int batch_size = mat_dim_a.batch_size_;

T
taixiurong 已提交
161 162 163
  int ldx = mat_dim_a.trans_ ? m : k;
  int ldy = mat_dim_b.trans_ ? k : n;
  int ldout = n;
164 165
  if (batch_size <= 1) {
    int r = 0;
T
taixiurong 已提交
166 167 168 169 170 171
    r = xpu::fc_fusion<XPUType, XPUType, XPUType, FCT>(
        dev_ctx.x_context(), reinterpret_cast<const XPUType *>(x->data<T>()),
        reinterpret_cast<const XPUType *>(y->data<T>()),
        reinterpret_cast<XPUType *>(data_c), m, n, k, mat_dim_a.trans_,
        mat_dim_b.trans_, nullptr, nullptr, nullptr, ldx, ldy, ldout, alpha, 0,
        nullptr, xpu::Activation_t::LINEAR);
T
taixiurong 已提交
172 173 174 175 176
    PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                      platform::errors::External(
                          "XPU fc_fusion kernel return wrong value[%d %s]", r,
                          XPUAPIErrorMsg[r]));
  } else {
177
    // batch matmul
T
taixiurong 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    int r = xpu::fc_batched<XPUType, XPUType, XPUType, FCT>(
        dev_ctx.x_context(),                              // Context* ctx,
        batch_size,                                       // int batch_size,
        mat_dim_a.trans_,                                 // bool x_trans,
        mat_dim_b.trans_,                                 // bool w_trans,
        m,                                                // int m,
        n,                                                // int n,
        k,                                                // int k,
        alpha,                                            // float alpha,
        reinterpret_cast<const XPUType *>(x->data<T>()),  // const TX* x,
        mat_dim_a.stride_,                                // int stride_a,
        reinterpret_cast<const XPUType *>(y->data<T>()),  // const TW* w,
        mat_dim_b.stride_,                                // int stride_b,
        0.0,                                              // float beta,
        reinterpret_cast<XPUType *>(data_c),              // TY* y,
        m * n,                                            // int stride_c,
        nullptr,   // const float* x_maxptr,
        nullptr);  // const float* w_maxptr
196

197 198
    PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                      platform::errors::External(
199 200 201 202
                          "XPU fc_batched kernel return wrong value[%d %s] "
                          "x_dims = %s , y_dims = %s",
                          r, XPUAPIErrorMsg[r], x_dims.to_str().c_str(),
                          y_dims.to_str().c_str()));
T
taixiurong 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215
  }
}

template <typename DeviceContext, typename T>
class MatMulXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *x = context.Input<framework::Tensor>("X");
    auto *y = context.Input<framework::Tensor>("Y");
    auto *out = context.Output<framework::Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());
    bool trans_x = context.Attr<bool>("transpose_X");
    bool trans_y = context.Attr<bool>("transpose_Y");
T
taixiurong 已提交
216
    if (std::is_same<paddle::platform::float16, T>::value) {
T
taixiurong 已提交
217
      MatMulXPUFunction<T, int16_t>(x, y, out, trans_x, trans_y, context);
T
taixiurong 已提交
218 219 220 221 222 223
    } else {
      if (std::getenv("XPU_PADDLE_MAT_MUL_FCINT32") != nullptr) {
        MatMulXPUFunction<T, int32_t>(x, y, out, trans_x, trans_y, context);
      } else {
        MatMulXPUFunction<T, int16_t>(x, y, out, trans_x, trans_y, context);
      }
224 225 226 227 228 229 230 231 232 233
    }
  }
};

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
static framework::Tensor XPUFoldHeadAndLastDims(
    const DeviceContext &context, const framework::Tensor &input) {
T
taixiurong 已提交
234
  using XPUType = typename XPUTypeTrait<T>::Type;
235 236 237 238 239 240 241 242 243 244 245 246
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }

  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> in_shape_host = {static_cast<int>(in_dims[0]),
                                    static_cast<int>(in_dims[1]),
                                    static_cast<int>(in_dims[2])};
  std::vector<int> axis_host = {1, 0, 2};
T
taixiurong 已提交
247 248 249
  int r = xpu::transpose(
      context.x_context(), reinterpret_cast<const XPUType *>(input.data<T>()),
      reinterpret_cast<XPUType *>(output.data<T>()), in_shape_host, axis_host);
250 251
  PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                    platform::errors::External(
252 253
                        "XPU transpose kernel return wrong value[%d %s]", r,
                        XPUAPIErrorMsg[r]));
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});

  return output;
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradXPUKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b,
              framework::Tensor *out) const {
    out->mutable_data<T>(context.GetPlace());
T
taixiurong 已提交
292
    if (std::is_same<paddle::platform::float16, T>::value) {
T
taixiurong 已提交
293
      MatMulXPUFunction<T, int16_t>(&a, &b, out, trans_a, trans_b, context);
T
taixiurong 已提交
294 295 296 297 298 299
    } else {
      if (std::getenv("XPU_PADDLE_MAT_MUL_GRAD_FCINT32") != nullptr) {
        MatMulXPUFunction<T, int32_t>(&a, &b, out, trans_a, trans_b, context);
      } else {
        MatMulXPUFunction<T, int16_t>(&a, &b, out, trans_a, trans_b, context);
      }
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    }
  }

  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
                     bool trans_b, bool is_fold_init_dims_b,
                     framework::Tensor *out) const {
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
      auto &dev_ctx = context.template device_context<DeviceContext>();
      MatMul(
          context, is_fold_init_dims_a
                       ? FoldInitDims(a)
                       : XPUFoldHeadAndLastDims<DeviceContext, T>(dev_ctx, a),
          trans_a, is_fold_init_dims_b
                       ? FoldInitDims(b)
                       : XPUFoldHeadAndLastDims<DeviceContext, T>(dev_ctx, b),
          trans_b, out);
    }
  }

  void Compute(const framework::ExecutionContext &context) const override {
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto *dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }

    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
taixiurong 已提交
386
namespace plat = paddle::platform;
387 388

REGISTER_OP_XPU_KERNEL(
T
taixiurong 已提交
389 390
    matmul, ops::MatMulXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::MatMulXPUKernel<paddle::platform::XPUDeviceContext, plat::float16>);
391 392
REGISTER_OP_XPU_KERNEL(
    matmul_grad,
T
taixiurong 已提交
393 394 395
    ops::MatMulGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::MatMulGradXPUKernel<paddle::platform::XPUDeviceContext,
                             plat::float16>);
396
#endif