Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6a3c8725
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6a3c8725
编写于
1月 14, 2021
作者:
T
taixiurong
提交者:
GitHub
1月 14, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support transformer v2.0 (#30381)
上级
e85be1b1
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
693 addition
and
544 deletion
+693
-544
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+1
-1
paddle/fluid/operators/layer_norm_op_xpu.cc
paddle/fluid/operators/layer_norm_op_xpu.cc
+13
-16
paddle/fluid/operators/matmul_op_xpu.cc
paddle/fluid/operators/matmul_op_xpu.cc
+90
-139
paddle/fluid/operators/matmul_v2_op_xpu.cc
paddle/fluid/operators/matmul_v2_op_xpu.cc
+159
-274
paddle/fluid/operators/one_hot_op_xpu.cc
paddle/fluid/operators/one_hot_op_xpu.cc
+1
-1
paddle/fluid/operators/one_hot_v2_op_xpu.cc
paddle/fluid/operators/one_hot_v2_op_xpu.cc
+70
-0
paddle/fluid/operators/scale_op_xpu.cc
paddle/fluid/operators/scale_op_xpu.cc
+7
-4
paddle/fluid/operators/softmax_op_xpu.cc
paddle/fluid/operators/softmax_op_xpu.cc
+15
-2
python/paddle/fluid/tests/unittests/xpu/test_matmul_v2_op_xpu.py
...paddle/fluid/tests/unittests/xpu/test_matmul_v2_op_xpu.py
+141
-107
python/paddle/fluid/tests/unittests/xpu/test_one_hot_v2_op_xpu.py
...addle/fluid/tests/unittests/xpu/test_one_hot_v2_op_xpu.py
+196
-0
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
6a3c8725
...
...
@@ -10,7 +10,7 @@ if (WITH_AARCH64)
elseif
(
WITH_SUNWAY
)
SET
(
XPU_URL
"https://baidu-kunlun-public.su.bcebos.com/paddle_depence/sunway/xpu_2020_1227.tar.gz"
CACHE STRING
""
FORCE
)
else
()
SET
(
XPU_URL
"https://baidu-kunlun-public.su.bcebos.com/paddle_depence/xpu_2021_01
05
.tar.gz"
CACHE STRING
""
FORCE
)
SET
(
XPU_URL
"https://baidu-kunlun-public.su.bcebos.com/paddle_depence/xpu_2021_01
_13
.tar.gz"
CACHE STRING
""
FORCE
)
endif
()
SET
(
XPU_SOURCE_DIR
"
${
THIRD_PARTY_PATH
}
/xpu"
)
...
...
paddle/fluid/operators/layer_norm_op_xpu.cc
浏览文件 @
6a3c8725
...
...
@@ -45,15 +45,13 @@ class LayerNormXPUKernel : public framework::OpKernel<T> {
auto
*
mean_data
=
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
variance_data
=
variance
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
layer_norm
(
dev_ctx
.
x_context
(),
left
,
right
,
x_data
,
y_data
,
scale_data
,
bias_data
,
epsilon
,
mean_data
,
variance_data
,
false
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(layer_norm) return wrong "
"value[%d], please check whether Baidu "
"Kunlun Card is properly installed."
,
r
));
int
r
=
xpu
::
layer_norm
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
left
,
right
,
epsilon
,
scale_data
,
bias_data
,
mean_data
,
variance_data
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU layer_norm kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
...
...
@@ -87,15 +85,14 @@ class LayerNormGradXPUKernel : public framework::OpKernel<T> {
auto
*
dx_data
=
(
dx
==
nullptr
?
nullptr
:
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
layer_norm_
backward
(
dev_ctx
.
x_context
(),
left
,
right
,
x_data
,
scale_data
,
variance
_data
,
mean_data
,
dy_data
,
dx_data
,
dscale_data
,
dbias_data
,
epsilon
);
int
r
=
xpu
::
layer_norm_
grad
(
dev_ctx
.
x_context
(),
x_data
,
dy_data
,
dx_data
,
left
,
right
,
epsilon
,
scale_data
,
mean
_data
,
variance_data
,
dscale_data
,
dbias_data
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(layer_norm_backward) return wrong "
"value[%d], please check whether Baidu "
"Kunlun Card is properly installed."
,
r
));
platform
::
errors
::
External
(
"XPU layer_norm_grad kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
...
...
paddle/fluid/operators/matmul_op_xpu.cc
浏览文件 @
6a3c8725
...
...
@@ -24,6 +24,8 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
static
framework
::
DDim
RowMatrixFromVector
(
const
framework
::
DDim
&
x_dim
)
{
if
(
x_dim
.
size
()
>
1
)
{
return
x_dim
;
...
...
@@ -97,6 +99,86 @@ static void ReshapeXYOutIntoMatrixSequence(framework::Tensor *x,
ReshapeTensorIntoMatrixSequence
(
y
,
mat_dim_y
);
}
template
<
typename
T
,
typename
FCT
>
static
void
MatMulXPUFunction
(
const
Tensor
*
x
,
const
Tensor
*
y
,
Tensor
*
out
,
bool
trans_x
,
bool
trans_y
,
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
{
const
auto
&
x_dims
=
x
->
dims
();
const
auto
&
y_dims
=
y
->
dims
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
auto
mat_dim_a
=
math
::
CreateMatrixDescriptor
(
RowMatrixFromVector
(
x_dims
),
0
,
trans_x
);
auto
mat_dim_b
=
math
::
CreateMatrixDescriptor
(
ColumnMatrixFromVector
(
y_dims
),
0
,
trans_y
);
if
(
x_dims
.
size
()
==
3
&&
y_dims
.
size
()
<=
2
)
{
// if transpose_X is true, the transpose cost much time
if
(
!
trans_x
)
{
mat_dim_a
.
height_
*=
mat_dim_a
.
batch_size_
;
mat_dim_a
.
batch_size_
=
0
;
}
else
{
mat_dim_b
.
batch_size_
=
mat_dim_a
.
batch_size_
;
mat_dim_b
.
height_
=
mat_dim_b
.
height_
/
mat_dim_b
.
batch_size_
;
}
}
PADDLE_ENFORCE_EQ
(
mat_dim_a
.
width_
,
mat_dim_b
.
height_
,
platform
::
errors
::
InvalidArgument
(
"Shape mistake in matmul_op, the "
"first tensor width must be same as "
"second tensor height, but received "
"width:%d, height:%d"
,
mat_dim_a
.
width_
,
mat_dim_b
.
height_
));
PADDLE_ENFORCE_EQ
(
mat_dim_a
.
batch_size_
,
mat_dim_b
.
batch_size_
,
platform
::
errors
::
InvalidArgument
(
"Shape mistake in matmul_op, the two input"
"tensor batch_size must be same, but received first "
"tensor batch_size:%d, second "
"tensor batch_size:%d"
,
mat_dim_a
.
batch_size_
,
mat_dim_b
.
batch_size_
));
T
alpha
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"alpha"
));
float
*
data_c
=
out
->
data
<
T
>
();
int
m
=
mat_dim_a
.
height_
;
int
n
=
mat_dim_b
.
width_
;
int
k
=
mat_dim_a
.
width_
;
int
ldx
=
mat_dim_a
.
trans_
?
m
:
k
;
int
ldy
=
mat_dim_b
.
trans_
?
k
:
n
;
int
ldout
=
n
;
int
batch_size
=
mat_dim_a
.
batch_size_
;
if
(
batch_size
==
0
)
{
int
r
=
xpu
::
fc_fusion
<
float
,
float
,
float
,
FCT
>
(
dev_ctx
.
x_context
(),
x
->
data
<
T
>
(),
y
->
data
<
T
>
(),
data_c
,
m
,
n
,
k
,
mat_dim_a
.
trans_
,
mat_dim_b
.
trans_
,
nullptr
,
nullptr
,
nullptr
,
ldx
,
ldy
,
ldout
,
alpha
,
0
,
nullptr
,
xpu
::
Activation_t
::
LINEAR
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU fc_fusion kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
else
{
// batch matmul
int
x_stride
=
mat_dim_a
.
stride_
;
int
y_stride
=
mat_dim_b
.
stride_
;
int
out_stride
=
m
*
n
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
const
float
*
x_data
=
x
->
data
<
T
>
()
+
x_stride
*
i
;
const
float
*
y_data
=
y
->
data
<
T
>
()
+
y_stride
*
i
;
float
*
out_data
=
data_c
+
out_stride
*
i
;
int
r
=
xpu
::
fc_fusion
<
float
,
float
,
float
,
FCT
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
out_data
,
m
,
n
,
k
,
mat_dim_a
.
trans_
,
mat_dim_b
.
trans_
,
nullptr
,
nullptr
,
nullptr
,
ldx
,
ldy
,
ldout
,
alpha
,
0
,
nullptr
,
xpu
::
Activation_t
::
LINEAR
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU fc_fusion kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
MatMulXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -105,78 +187,12 @@ class MatMulXPUKernel : public framework::OpKernel<T> {
auto
*
y
=
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
mat_dim_a
=
math
::
CreateMatrixDescriptor
(
RowMatrixFromVector
(
x
->
dims
()),
0
,
context
.
Attr
<
bool
>
(
"transpose_X"
));
auto
mat_dim_b
=
math
::
CreateMatrixDescriptor
(
ColumnMatrixFromVector
(
y
->
dims
()),
0
,
context
.
Attr
<
bool
>
(
"transpose_Y"
));
const
auto
&
x_dims
=
x
->
dims
();
const
auto
&
y_dims
=
y
->
dims
();
if
(
x_dims
.
size
()
==
3
&&
y_dims
.
size
()
<=
2
)
{
// if transpose_X is true, the transpose cost much time
if
(
!
context
.
Attr
<
bool
>
(
"transpose_X"
))
{
mat_dim_a
.
height_
*=
mat_dim_a
.
batch_size_
;
mat_dim_a
.
batch_size_
=
0
;
}
else
{
mat_dim_b
.
batch_size_
=
mat_dim_a
.
batch_size_
;
mat_dim_b
.
height_
=
mat_dim_b
.
height_
/
mat_dim_b
.
batch_size_
;
}
}
PADDLE_ENFORCE_EQ
(
mat_dim_a
.
width_
,
mat_dim_b
.
height_
,
platform
::
errors
::
InvalidArgument
(
"Shape mistake in matmul_op, the "
"first tensor width must be same as "
"second tensor height, but received "
"width:%d, height:%d"
,
mat_dim_a
.
width_
,
mat_dim_b
.
height_
));
PADDLE_ENFORCE_EQ
(
mat_dim_a
.
batch_size_
,
mat_dim_b
.
batch_size_
,
platform
::
errors
::
InvalidArgument
(
"Shape mistake in matmul_op, the two input"
"tensor batch_size must be same, but received first "
"tensor batch_size:%d, second "
"tensor batch_size:%d"
,
mat_dim_a
.
batch_size_
,
mat_dim_b
.
batch_size_
));
T
alpha
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"alpha"
));
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
float
*
data_c
=
out
->
data
<
T
>
();
int
m
=
mat_dim_a
.
height_
;
int
n
=
mat_dim_b
.
width_
;
int
k
=
mat_dim_a
.
width_
;
int
ldx
=
mat_dim_a
.
trans_
?
m
:
k
;
int
ldy
=
mat_dim_b
.
trans_
?
k
:
n
;
int
ldout
=
n
;
int
batch_size
=
mat_dim_a
.
batch_size_
;
if
(
batch_size
==
0
||
batch_size
==
1
)
{
int
r
=
xpu
::
fc_fusion
<
float
,
float
,
float
,
int16_t
>
(
dev_ctx
.
x_context
(),
x
->
data
<
T
>
(),
y
->
data
<
T
>
(),
data_c
,
m
,
n
,
k
,
mat_dim_a
.
trans_
,
mat_dim_b
.
trans_
,
nullptr
,
nullptr
,
nullptr
,
ldx
,
ldy
,
ldout
,
alpha
,
0
,
nullptr
,
xpu
::
Activation_t
::
LINEAR
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU fc_fusion kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
bool
trans_x
=
context
.
Attr
<
bool
>
(
"transpose_X"
);
bool
trans_y
=
context
.
Attr
<
bool
>
(
"transpose_Y"
);
if
(
std
::
getenv
(
"XPU_PADDLE_MAT_MUL_FCINT32"
)
!=
nullptr
)
{
MatMulXPUFunction
<
T
,
int32_t
>
(
x
,
y
,
out
,
trans_x
,
trans_y
,
context
);
}
else
{
// batch matmul
int
x_stride
=
mat_dim_a
.
stride_
;
int
y_stride
=
mat_dim_b
.
stride_
;
int
out_stride
=
m
*
n
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
const
float
*
x_data
=
x
->
data
<
T
>
()
+
x_stride
*
i
;
const
float
*
y_data
=
y
->
data
<
T
>
()
+
y_stride
*
i
;
float
*
out_data
=
data_c
+
out_stride
*
i
;
int
r
=
xpu
::
fc_fusion
<
float
,
float
,
float
,
int16_t
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
out_data
,
m
,
n
,
k
,
mat_dim_a
.
trans_
,
mat_dim_b
.
trans_
,
nullptr
,
nullptr
,
nullptr
,
ldx
,
ldy
,
ldout
,
alpha
,
0
,
nullptr
,
xpu
::
Activation_t
::
LINEAR
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU fc_fusion kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
MatMulXPUFunction
<
T
,
int16_t
>
(
x
,
y
,
out
,
trans_x
,
trans_y
,
context
);
}
}
};
...
...
@@ -244,75 +260,10 @@ class MatMulGradXPUKernel : public framework::OpKernel<T> {
const
framework
::
Tensor
&
b
,
bool
trans_b
,
framework
::
Tensor
*
out
)
const
{
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
mat_dim_a
=
math
::
CreateMatrixDescriptor
(
a
.
dims
(),
0
,
trans_a
);
auto
mat_dim_b
=
math
::
CreateMatrixDescriptor
(
b
.
dims
(),
0
,
trans_b
);
const
auto
&
a_dims
=
a
.
dims
();
const
auto
&
b_dims
=
b
.
dims
();
if
(
a_dims
.
size
()
==
3
&&
b_dims
.
size
()
<=
2
)
{
// if transpose_X is true, the transpose cost much time
if
(
!
context
.
Attr
<
bool
>
(
"transpose_X"
))
{
mat_dim_a
.
height_
*=
mat_dim_a
.
batch_size_
;
mat_dim_a
.
batch_size_
=
0
;
}
else
{
mat_dim_b
.
batch_size_
=
mat_dim_a
.
batch_size_
;
mat_dim_b
.
height_
=
mat_dim_b
.
height_
/
mat_dim_b
.
batch_size_
;
}
}
PADDLE_ENFORCE_EQ
(
mat_dim_a
.
width_
,
mat_dim_b
.
height_
,
platform
::
errors
::
InvalidArgument
(
"Shape mistake in matmul_grad_op, the "
"first tensor width must be same as second tensor "
"height, but received "
"width:%d, height:%d"
,
mat_dim_a
.
width_
,
mat_dim_b
.
height_
));
PADDLE_ENFORCE_EQ
(
mat_dim_a
.
batch_size_
,
mat_dim_b
.
batch_size_
,
platform
::
errors
::
InvalidArgument
(
"Shape mistake in matmul_grad_op, the two input"
"tensor batch_size must be same, but received first "
"tensor batch_size:%d, second "
"tensor batch_size:%d"
,
mat_dim_a
.
batch_size_
,
mat_dim_b
.
batch_size_
));
T
alpha
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"alpha"
));
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
float
*
data_c
=
out
->
data
<
T
>
();
int
m
=
mat_dim_a
.
height_
;
int
n
=
mat_dim_b
.
width_
;
int
k
=
mat_dim_a
.
width_
;
int
ldx
=
mat_dim_a
.
trans_
?
m
:
k
;
int
ldy
=
mat_dim_b
.
trans_
?
k
:
n
;
int
ldout
=
n
;
int
batch_size
=
mat_dim_a
.
batch_size_
;
if
(
batch_size
==
0
||
batch_size
==
1
)
{
int
r
=
xpu
::
fc_fusion
<
float
,
float
,
float
,
int16_t
>
(
dev_ctx
.
x_context
(),
a
.
data
<
T
>
(),
b
.
data
<
T
>
(),
data_c
,
m
,
n
,
k
,
mat_dim_a
.
trans_
,
mat_dim_b
.
trans_
,
nullptr
,
nullptr
,
nullptr
,
ldx
,
ldy
,
ldout
,
alpha
,
0
,
nullptr
,
xpu
::
Activation_t
::
LINEAR
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU fc_fusion kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
if
(
std
::
getenv
(
"XPU_PADDLE_MAT_MUL_GRAD_FCINT32"
)
!=
nullptr
)
{
MatMulXPUFunction
<
T
,
int32_t
>
(
&
a
,
&
b
,
out
,
trans_a
,
trans_b
,
context
);
}
else
{
// batch matmul
int
x_stride
=
mat_dim_a
.
stride_
;
int
y_stride
=
mat_dim_b
.
stride_
;
int
out_stride
=
m
*
n
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
const
float
*
x_data
=
a
.
data
<
T
>
()
+
x_stride
*
i
;
const
float
*
y_data
=
b
.
data
<
T
>
()
+
y_stride
*
i
;
float
*
out_data
=
data_c
+
out_stride
*
i
;
int
r
=
xpu
::
fc_fusion
<
float
,
float
,
float
,
int16_t
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
out_data
,
m
,
n
,
k
,
mat_dim_a
.
trans_
,
mat_dim_b
.
trans_
,
nullptr
,
nullptr
,
nullptr
,
ldx
,
ldy
,
ldout
,
alpha
,
0
,
nullptr
,
xpu
::
Activation_t
::
LINEAR
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU fc_fusion kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
MatMulXPUFunction
<
T
,
int16_t
>
(
&
a
,
&
b
,
out
,
trans_a
,
trans_b
,
context
);
}
}
...
...
paddle/fluid/operators/matmul_v2_op_xpu.cc
浏览文件 @
6a3c8725
...
...
@@ -21,211 +21,141 @@
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
void
MatMulXPUFunction
(
const
Tensor
*
X
,
const
Tensor
*
Y
,
const
std
::
vector
<
std
::
int64_t
>&
x_dims
,
const
std
::
vector
<
std
::
int64_t
>&
y_dims
,
Tensor
*
Out
,
bool
trans_x
,
bool
trans_y
,
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
{
const
int
x_ndim
=
x_dims
.
size
();
const
int
y_ndim
=
y_dims
.
size
();
template
<
typename
T
,
typename
FCT
>
static
void
MatMulXPUFunction
(
const
Tensor
*
x
,
const
Tensor
*
y
,
Tensor
*
out
,
bool
trans_x
,
bool
trans_y
,
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
{
const
auto
&
x_dims
=
x
->
dims
();
const
auto
&
y_dims
=
y
->
dims
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
// currently only support x_ndim == y_dim and non-broadcast case
PADDLE_ENFORCE_EQ
(
x_ndim
,
y_ndim
,
platform
::
errors
::
InvalidArgument
(
"Shape mistake in matmul_v2_op"
));
for
(
int
i
=
0
;
i
<
x_ndim
-
2
;
i
++
)
{
PADDLE_ENFORCE_EQ
(
x_dims
.
data
()[
i
],
y_dims
.
data
()[
i
],
platform
::
errors
::
InvalidArgument
(
"Shape mistake in matmul_v2_op"
));
}
int
ret
=
0
;
if
(
x_ndim
==
1
&&
y_ndim
==
1
)
{
PADDLE_ENFORCE_EQ
(
X
->
numel
(),
Y
->
numel
(),
platform
::
errors
::
InvalidArgument
(
"X's numbers is not equal to Y's numbers,"
"when X/Y's dims =1"
));
VLOG
(
3
)
<<
"MatMul's case 1"
;
Out
->
Resize
({
1
});
Out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ret
=
baidu
::
xpu
::
api
::
fc_int16
(
dev_ctx
.
x_context
(),
false
,
false
,
1
,
1
,
X
->
numel
(),
1.0
f
,
X
->
data
<
T
>
(),
Y
->
data
<
T
>
(),
0.0
f
,
Out
->
data
<
T
>
());
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d] in matmul_v2, please check whether "
"Baidu Kunlun Card is properly installed."
,
ret
));
return
;
}
auto
mat_dim_a
=
math
::
CreateMatrixDescriptor
(
RowMatrixFromVector
(
x_dims
),
0
,
trans_x
);
auto
mat_dim_b
=
math
::
CreateMatrixDescriptor
(
ColumnMatrixFromVector
(
y_dims
),
0
,
trans_y
);
if
(
x_ndim
==
1
)
{
const
int
N
=
X
->
numel
();
if
(
trans_y
)
{
PADDLE_ENFORCE_EQ
(
y_dims
[
y_ndim
-
1
],
N
,
platform
::
errors
::
InvalidArgument
(
"Input(Y) has error dim."
));
if
(
x_dims
.
size
()
==
3
&&
y_dims
.
size
()
<=
2
)
{
// if transpose_X is true, the transpose cost much time
if
(
!
trans_x
)
{
mat_dim_a
.
height_
*=
mat_dim_a
.
batch_size_
;
mat_dim_a
.
batch_size_
=
0
;
}
else
{
PADDLE_ENFORCE_EQ
(
y_dims
[
y_ndim
-
2
],
N
,
platform
::
errors
::
InvalidArgument
(
"Input(Y) has error dim."
));
mat_dim_b
.
batch_size_
=
mat_dim_a
.
batch_size_
;
mat_dim_b
.
height_
=
mat_dim_b
.
height_
/
mat_dim_b
.
batch_size_
;
}
std
::
vector
<
std
::
int64_t
>
out_dims
(
y_ndim
-
1
);
if
(
trans_y
)
{
std
::
copy_n
(
y_dims
.
cbegin
(),
y_ndim
-
1
,
out_dims
.
begin
());
}
else
{
std
::
copy_n
(
y_dims
.
cbegin
(),
y_ndim
-
2
,
out_dims
.
begin
());
out_dims
.
back
()
=
y_dims
.
back
();
}
Out
->
Resize
(
framework
::
make_ddim
(
out_dims
));
Out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
trans_y
)
{
const
int
M
=
Y
->
numel
()
/
N
;
VLOG
(
3
)
<<
"MatMul's case 2"
;
ret
=
baidu
::
xpu
::
api
::
fc_int16
(
dev_ctx
.
x_context
(),
false
,
true
,
1
,
M
,
N
,
1.0
f
,
X
->
data
<
T
>
(),
Y
->
data
<
T
>
(),
0.0
f
,
Out
->
data
<
T
>
());
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d] in "
"matmul_v2, please check whether "
"Baidu Kunlun Card is properly installed."
,
ret
));
}
else
{
const
int
M
=
y_dims
[
y_ndim
-
1
];
const
int
batch_size
=
Y
->
numel
()
/
(
M
*
N
);
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
ret
=
baidu
::
xpu
::
api
::
fc_int16
(
dev_ctx
.
x_context
(),
false
,
false
,
1
,
M
,
N
,
1.0
f
,
X
->
data
<
T
>
(),
Y
->
data
<
T
>
()
+
i
*
M
*
N
,
0.0
f
,
Out
->
data
<
T
>
()
+
i
*
M
);
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d] in matmul_v2, "
"please check whether "
"Baidu Kunlun Card is properly installed."
,
ret
));
}
}
return
;
}
if
(
y_ndim
==
1
)
{
const
int
N
=
Y
->
numel
();
if
(
trans_x
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
x_ndim
-
2
],
N
,
platform
::
errors
::
InvalidArgument
(
"Input(X) has error dim."
));
}
else
{
PADDLE_ENFORCE_EQ
(
x_dims
[
x_ndim
-
1
],
N
,
platform
::
errors
::
InvalidArgument
(
"Input(X) has error dim."
));
if
(
mat_dim_a
.
width_
==
mat_dim_b
.
height_
)
{
if
(
mat_dim_a
.
batch_size_
==
0
&&
mat_dim_b
.
batch_size_
==
1
)
{
mat_dim_a
.
batch_size_
=
mat_dim_b
.
batch_size_
=
0
;
}
std
::
vector
<
std
::
int64_t
>
out_dims
(
x_ndim
-
1
);
if
(
trans_x
)
{
std
::
copy_n
(
x_dims
.
cbegin
(),
x_ndim
-
2
,
out_dims
.
begin
());
out_dims
.
back
()
=
x_dims
.
back
();
}
else
{
std
::
copy_n
(
x_dims
.
cbegin
(),
x_ndim
-
1
,
out_dims
.
begin
());
}
Out
->
Resize
(
framework
::
make_ddim
(
out_dims
));
Out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
trans_x
)
{
const
int
M
=
x_dims
[
x_ndim
-
1
];
const
int
batch_size
=
X
->
numel
()
/
(
M
*
N
);
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
ret
=
baidu
::
xpu
::
api
::
fc_int16
(
dev_ctx
.
x_context
(),
true
,
false
,
M
,
1
,
N
,
1.0
f
,
X
->
data
<
T
>
()
+
i
*
M
*
N
,
Y
->
data
<
T
>
(),
0.0
f
,
Out
->
data
<
T
>
()
+
i
*
M
);
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d] in matmul_v2, "
"please check whether "
"Baidu Kunlun Card is properly installed."
,
ret
));
}
}
else
{
const
int
M
=
X
->
numel
()
/
N
;
VLOG
(
3
)
<<
"MatMul's case 7"
;
ret
=
baidu
::
xpu
::
api
::
fc_int16
(
dev_ctx
.
x_context
(),
false
,
false
,
M
,
1
,
N
,
1.0
f
,
X
->
data
<
T
>
(),
Y
->
data
<
T
>
(),
0.0
f
,
Out
->
data
<
T
>
());
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d] in "
"matmul_v2, please check whether "
"Baidu Kunlun Card is properly installed."
,
ret
));
if
(
mat_dim_a
.
batch_size_
==
1
&&
mat_dim_b
.
batch_size_
==
0
)
{
mat_dim_a
.
batch_size_
=
mat_dim_b
.
batch_size_
=
0
;
}
return
;
}
const
int
M
=
trans_x
?
x_dims
[
x_ndim
-
1
]
:
x_dims
[
x_ndim
-
2
];
const
int
K
=
trans_x
?
x_dims
[
x_ndim
-
2
]
:
x_dims
[
x_ndim
-
1
];
if
(
trans_y
)
{
PADDLE_ENFORCE_EQ
(
y_dims
[
y_ndim
-
1
],
K
,
platform
::
errors
::
InvalidArgument
(
"Input(X) has error dim."
));
PADDLE_ENFORCE_EQ
(
mat_dim_a
.
width_
,
mat_dim_b
.
height_
,
platform
::
errors
::
InvalidArgument
(
"Shape mistake in matmul_v2_op xdims = %s ydims = %s"
,
x_dims
.
to_str
(),
y_dims
.
to_str
()));
PADDLE_ENFORCE_EQ
(
mat_dim_a
.
batch_size_
,
mat_dim_b
.
batch_size_
,
platform
::
errors
::
InvalidArgument
(
"Shape mistake in matmul_v2_op xdims = %s ydims = %s"
,
x_dims
.
to_str
(),
y_dims
.
to_str
()));
float
*
data_c
=
out
->
data
<
T
>
();
int
m
=
mat_dim_a
.
height_
;
int
n
=
mat_dim_b
.
width_
;
int
k
=
mat_dim_a
.
width_
;
int
batch_size
=
mat_dim_a
.
batch_size_
;
if
(
batch_size
==
0
)
{
int
r
=
xpu
::
fc
<
float
,
float
,
float
,
FCT
>
(
dev_ctx
.
x_context
(),
x
->
data
<
T
>
(),
y
->
data
<
T
>
(),
data_c
,
m
,
n
,
k
,
mat_dim_a
.
trans_
,
mat_dim_b
.
trans_
,
nullptr
,
nullptr
,
nullptr
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU fc_fusion kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
else
{
PADDLE_ENFORCE_EQ
(
y_dims
[
y_ndim
-
2
],
K
,
platform
::
errors
::
InvalidArgument
(
"Input(X) has error dim."
));
}
const
int
N
=
trans_y
?
y_dims
[
y_ndim
-
2
]
:
y_dims
[
y_ndim
-
1
];
const
int
ndim
=
(
std
::
max
)(
x_ndim
,
y_ndim
);
std
::
vector
<
std
::
int64_t
>
out_broadcast_dims
(
ndim
);
int
batch_size
=
1
;
for
(
int
i
=
0
;
i
<
ndim
-
2
;
i
++
)
{
PADDLE_ENFORCE_EQ
(
x_dims
.
data
()[
i
],
y_dims
.
data
()[
i
],
platform
::
errors
::
InvalidArgument
(
"Shape mistake in matmul_v2_op"
));
out_broadcast_dims
[
i
]
=
x_dims
.
data
()[
i
];
batch_size
*=
x_dims
.
data
()[
i
];
// batch matmul
int
x_stride
=
mat_dim_a
.
stride_
;
int
y_stride
=
mat_dim_b
.
stride_
;
int
out_stride
=
m
*
n
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
const
float
*
x_data
=
x
->
data
<
T
>
()
+
x_stride
*
i
;
const
float
*
y_data
=
y
->
data
<
T
>
()
+
y_stride
*
i
;
float
*
out_data
=
data_c
+
out_stride
*
i
;
int
r
=
xpu
::
fc
<
float
,
float
,
float
,
FCT
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
out_data
,
m
,
n
,
k
,
mat_dim_a
.
trans_
,
mat_dim_b
.
trans_
,
nullptr
,
nullptr
,
nullptr
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU fc_fusion kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
out_broadcast_dims
[
ndim
-
2
]
=
M
;
out_broadcast_dims
[
ndim
-
1
]
=
N
;
Out
->
Resize
(
framework
::
make_ddim
(
out_broadcast_dims
));
Out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ret
=
baidu
::
xpu
::
api
::
batched_gemm_int16
(
dev_ctx
.
x_context
(),
trans_x
,
trans_y
,
batch_size
,
M
,
N
,
K
,
1.0
f
,
X
->
data
<
T
>
(),
Y
->
data
<
T
>
(),
Out
->
data
<
T
>
(),
nullptr
,
nullptr
);
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d] in matmul_v2, please check whether "
"Baidu Kunlun Card is properly installed."
,
ret
));
}
template
<
typename
T
>
class
MatMulV2XPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
Y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
O
ut
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
o
ut
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
bool
trans_x
=
ctx
.
Attr
<
bool
>
(
"trans_x"
);
bool
trans_y
=
ctx
.
Attr
<
bool
>
(
"trans_y"
);
MatMulXPUFunction
<
T
>
(
X
,
Y
,
vectorize
(
X
->
dims
()),
vectorize
(
Y
->
dims
()),
Out
,
trans_x
,
trans_y
,
ctx
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
std
::
getenv
(
"XPU_PADDLE_MAT_MUL_V2_FCINT32"
)
!=
nullptr
)
{
MatMulXPUFunction
<
T
,
int32_t
>
(
x
,
y
,
out
,
trans_x
,
trans_y
,
ctx
);
}
else
{
MatMulXPUFunction
<
T
,
int16_t
>
(
x
,
y
,
out
,
trans_x
,
trans_y
,
ctx
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
static
framework
::
Tensor
XPUFoldHeadAndLastDims
(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
)
{
auto
in_dims
=
input
.
dims
();
if
(
in_dims
.
size
()
!=
3
)
{
return
input
;
}
framework
::
Tensor
output
;
output
.
Resize
({
in_dims
[
1
],
in_dims
[
0
],
in_dims
[
2
]});
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
int
>
in_shape_host
=
{
static_cast
<
int
>
(
in_dims
[
0
]),
static_cast
<
int
>
(
in_dims
[
1
]),
static_cast
<
int
>
(
in_dims
[
2
])};
std
::
vector
<
int
>
axis_host
=
{
1
,
0
,
2
};
int
r
=
xpu
::
transpose
(
context
.
x_context
(),
input
.
data
<
T
>
(),
output
.
data
<
T
>
(),
in_shape_host
.
data
(),
axis_host
.
data
(),
/*ndims=*/
3
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU transpose kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
output
.
Resize
({
in_dims
[
1
],
in_dims
[
0
]
*
in_dims
[
2
]});
return
output
;
}
template
<
typename
T
>
class
MatMulV2XPUGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
MatMul
(
const
framework
::
ExecutionContext
&
c
ontext
,
void
MatMul
(
const
framework
::
ExecutionContext
&
c
tx
,
const
framework
::
Tensor
&
a
,
bool
trans_a
,
const
framework
::
Tensor
&
b
,
bool
trans_b
,
framework
::
Tensor
*
out
)
const
{
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
MatMulXPUFunction
<
T
>
(
&
a
,
&
b
,
vectorize
(
a
.
dims
()),
vectorize
(
b
.
dims
()),
out
,
trans_a
,
trans_b
,
context
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
std
::
getenv
(
"XPU_PADDLE_MAT_MUL_GRAD_V2_FCINT32"
)
!=
nullptr
)
{
MatMulXPUFunction
<
T
,
int32_t
>
(
&
a
,
&
b
,
out
,
trans_a
,
trans_b
,
ctx
);
}
else
{
MatMulXPUFunction
<
T
,
int16_t
>
(
&
a
,
&
b
,
out
,
trans_a
,
trans_b
,
ctx
);
}
}
void
CalcInputGrad
(
const
framework
::
ExecutionContext
&
context
,
...
...
@@ -239,118 +169,73 @@ class MatMulV2XPUGradKernel : public framework::OpKernel<T> {
if
(
!
need_combine
)
{
MatMul
(
context
,
a
,
trans_a
,
b
,
trans_b
,
out
);
}
else
{
// currently not support this case
auto
&
dev_ctx
=
context
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
MatMul
(
context
,
is_fold_init_dims_a
?
FoldInitDims
(
a
)
:
XPUFoldHeadAndLastDims
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
dev_ctx
,
a
),
trans_a
,
is_fold_init_dims_b
?
FoldInitDims
(
b
)
:
XPUFoldHeadAndLastDims
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
dev_ctx
,
b
),
trans_b
,
out
);
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
bool
transpose_x
=
ctx
.
Attr
<
bool
>
(
"trans_x"
);
bool
transpose_y
=
ctx
.
Attr
<
bool
>
(
"trans_y"
);
auto
x
=
*
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
y
=
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
dout
=
*
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
// get dims
std
::
vector
<
std
::
int64_t
>
x_dims
=
vectorize
(
x
.
dims
());
std
::
vector
<
std
::
int64_t
>
y_dims
=
vectorize
(
y
.
dims
());
std
::
vector
<
std
::
int64_t
>
dout_dims
=
vectorize
(
dout
.
dims
());
int
x_ndim
=
x_dims
.
size
();
int
y_ndim
=
y_dims
.
size
();
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
// Case1 : x's or y's dim = 1
int
ret
=
0
;
if
(
x_ndim
==
1
&&
y_ndim
==
1
)
{
if
(
dx
)
{
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ret
=
baidu
::
xpu
::
api
::
fc_int16
(
dev_ctx
.
x_context
(),
false
,
false
,
dx
->
numel
(),
1
,
1
,
1.0
f
,
y
.
data
<
T
>
(),
dout
.
data
<
T
>
(),
0.0
f
,
dx
->
data
<
T
>
());
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d] in "
"matmul_v2_grad, please check whether "
"Baidu Kunlun Card is properly installed."
,
ret
));
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
bool
transpose_x
=
context
.
Attr
<
bool
>
(
"trans_x"
);
bool
transpose_y
=
context
.
Attr
<
bool
>
(
"trans_y"
);
auto
x
=
*
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
y
=
*
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
dout
=
*
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
ReshapeXYOutIntoMatrixSequence
(
&
x
,
&
y
,
&
dout
,
transpose_x
,
transpose_y
);
framework
::
DDim
dx_dims
;
if
(
dx
)
{
dx_dims
=
dx
->
dims
();
if
(
dx_dims
!=
x
.
dims
())
{
dx
->
Resize
(
x
.
dims
());
}
if
(
dy
)
{
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ret
=
baidu
::
xpu
::
api
::
fc_int16
(
dev_ctx
.
x_context
(),
false
,
false
,
dy
->
numel
(),
1
,
1
,
1.0
f
,
x
.
data
<
T
>
(),
dout
.
data
<
T
>
(),
0.0
f
,
dy
->
data
<
T
>
());
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d] in "
"matmul_v2_grad, please check whether "
"Baidu Kunlun Card is properly installed."
,
ret
));
}
framework
::
DDim
dy_dims
;
if
(
dy
)
{
dy_dims
=
dy
->
dims
();
if
(
dy_dims
!=
y
.
dims
())
{
dy
->
Resize
(
y
.
dims
());
}
return
;
}
bool
is_broadcast
=
true
;
if
(
x_ndim
<=
2
||
y_ndim
<=
2
)
{
is_broadcast
=
false
;
}
else
if
(
x_ndim
!=
y_ndim
)
{
is_broadcast
=
true
;
if
(
transpose_x
&&
transpose_y
)
{
CalcInputGrad
(
context
,
y
,
true
,
true
,
dout
,
true
,
false
,
dx
);
CalcInputGrad
(
context
,
dout
,
true
,
true
,
x
,
true
,
false
,
dy
);
}
else
if
(
transpose_x
)
{
CalcInputGrad
(
context
,
y
,
false
,
false
,
dout
,
true
,
false
,
dx
);
CalcInputGrad
(
context
,
x
,
false
,
false
,
dout
,
false
,
true
,
dy
);
}
else
if
(
transpose_y
)
{
CalcInputGrad
(
context
,
dout
,
false
,
false
,
y
,
false
,
true
,
dx
);
CalcInputGrad
(
context
,
dout
,
true
,
true
,
x
,
false
,
true
,
dy
);
}
else
{
is_broadcast
=
!
std
::
equal
(
x_dims
.
cbegin
(),
x_dims
.
cbegin
()
+
x_ndim
-
2
,
y_dims
.
cbegin
()
);
CalcInputGrad
(
context
,
dout
,
false
,
false
,
y
,
true
,
false
,
dx
);
CalcInputGrad
(
context
,
x
,
true
,
true
,
dout
,
false
,
true
,
dy
);
}
// currently only support non-broadcast case
PADDLE_ENFORCE_EQ
(
is_broadcast
,
false
,
platform
::
errors
::
InvalidArgument
(
"Shape mistake in matmul_v2_op"
));
// Case2: no broadcast or no batch size, it aims to speed and it is same as
// matmul in old version.
if
(
!
is_broadcast
)
{
ReshapeXYOutIntoMatrixSequence
(
&
x
,
&
y
,
&
dout
,
transpose_x
,
transpose_y
);
framework
::
DDim
dx_dims
;
if
(
dx
)
{
dx_dims
=
dx
->
dims
();
if
(
dx_dims
!=
x
.
dims
())
{
dx
->
Resize
(
x
.
dims
());
}
}
framework
::
DDim
dy_dims
;
if
(
dy
)
{
dy_dims
=
dy
->
dims
();
if
(
dy_dims
!=
y
.
dims
())
{
dy
->
Resize
(
y
.
dims
());
}
}
if
(
transpose_x
&&
transpose_y
)
{
CalcInputGrad
(
ctx
,
y
,
true
,
true
,
dout
,
true
,
false
,
dx
);
CalcInputGrad
(
ctx
,
dout
,
true
,
true
,
x
,
true
,
false
,
dy
);
}
else
if
(
transpose_x
)
{
CalcInputGrad
(
ctx
,
y
,
false
,
false
,
dout
,
true
,
false
,
dx
);
CalcInputGrad
(
ctx
,
x
,
false
,
false
,
dout
,
false
,
true
,
dy
);
}
else
if
(
transpose_y
)
{
CalcInputGrad
(
ctx
,
dout
,
false
,
false
,
y
,
false
,
true
,
dx
);
CalcInputGrad
(
ctx
,
dout
,
true
,
true
,
x
,
false
,
true
,
dy
);
}
else
{
CalcInputGrad
(
ctx
,
dout
,
false
,
false
,
y
,
true
,
false
,
dx
);
CalcInputGrad
(
ctx
,
x
,
true
,
true
,
dout
,
false
,
true
,
dy
);
if
(
dx
)
{
if
(
dx_dims
!=
x
.
dims
())
{
dx
->
Resize
(
dx_dims
);
}
}
if
(
dx
)
{
if
(
dx_dims
!=
x
.
dims
())
{
dx
->
Resize
(
dx_dims
);
}
}
if
(
dy
)
{
if
(
dy_dims
!=
y
.
dims
())
{
dy
->
Resize
(
dy_dims
);
}
if
(
dy
)
{
if
(
dy_dims
!=
y
.
dims
())
{
dy
->
Resize
(
dy_dims
);
}
}
}
...
...
paddle/fluid/operators/one_hot_op_xpu.cc
浏览文件 @
6a3c8725
...
...
@@ -35,7 +35,7 @@ class OneHotXPUKernel : public framework::OpKernel<T> {
if
(
context
.
HasInput
(
"depth_tensor"
))
{
auto
*
depth_tensor
=
context
.
Input
<
Tensor
>
(
"depth_tensor"
);
auto
*
depth_data
=
depth_tensor
->
data
<
int32_t
>
();
if
(
depth_tensor
->
place
()
==
platform
::
XPUPlace
(
))
{
if
(
platform
::
is_xpu_place
(
depth_tensor
->
place
()
))
{
xpu_memcpy
(
static_cast
<
void
*>
(
&
depth
),
static_cast
<
const
void
*>
(
depth_data
),
sizeof
(
int32_t
),
XPU_DEVICE_TO_HOST
);
...
...
paddle/fluid/operators/one_hot_v2_op_xpu.cc
0 → 100644
浏览文件 @
6a3c8725
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_XPU
#include <string>
#include <vector>
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/operators/one_hot_op.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
OneHotV2XPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
depth
=
context
.
Attr
<
int
>
(
"depth"
);
if
(
context
.
HasInput
(
"depth_tensor"
))
{
auto
*
depth_tensor
=
context
.
Input
<
Tensor
>
(
"depth_tensor"
);
auto
*
depth_data
=
depth_tensor
->
data
<
int32_t
>
();
if
(
platform
::
is_xpu_place
(
depth_tensor
->
place
()))
{
xpu_memcpy
(
static_cast
<
void
*>
(
&
depth
),
static_cast
<
const
void
*>
(
depth_data
),
sizeof
(
int32_t
),
XPU_DEVICE_TO_HOST
);
}
else
{
depth
=
depth_data
[
0
];
}
auto
out_dims
=
out
->
dims
();
out_dims
[
out_dims
.
size
()
-
1
]
=
depth
;
out
->
Resize
(
out_dims
);
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
len
=
in
->
numel
();
int
ret
=
xpu
::
one_hot
<
T
>
(
dev_ctx
.
x_context
(),
in
->
data
<
T
>
(),
out
->
mutable_data
<
float
>
(
context
.
GetPlace
()),
len
,
depth
,
1.0
,
0.0
);
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU one_hot kernel return wrong value[%d %s]"
,
ret
,
XPUAPIErrorMsg
[
ret
]));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
one_hot_v2
,
ops
::
OneHotV2XPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
int
>
,
ops
::
OneHotV2XPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
int64_t
>
);
#endif
paddle/fluid/operators/scale_op_xpu.cc
浏览文件 @
6a3c8725
...
...
@@ -46,10 +46,13 @@ class ScaleXPUKernel : public framework::OpKernel<T> {
in
->
dims
().
to_str
().
c_str
(),
out
->
dims
().
to_str
().
c_str
()));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
in
->
numel
(),
scale
,
bias
,
bias_after_scale
,
in
->
data
<
float
>
(),
out
->
data
<
float
>
());
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
Fatal
(
"XPU scale kernel error!"
));
int
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
in
->
data
<
float
>
(),
out
->
data
<
float
>
(),
in
->
numel
(),
bias_after_scale
,
scale
,
bias
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU scale kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
...
...
paddle/fluid/operators/softmax_op_xpu.cc
浏览文件 @
6a3c8725
...
...
@@ -41,8 +41,21 @@ class SoftmaxXPUKernel : public framework::OpKernel<T> {
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
softmax
<
T
>
(
dev_ctx
.
x_context
(),
x
->
data
<
float
>
(),
out
->
data
<
float
>
(),
x_dims
,
axis
);
int
r
=
XPU_SUCCESS
;
Tensor
clip_x
;
int
len
=
x
->
numel
();
T
*
clip_x_data
=
clip_x
.
mutable_data
<
T
>
(
platform
::
XPUPlace
(),
len
*
sizeof
(
T
));
r
=
xpu
::
clip
(
dev_ctx
.
x_context
(),
x
->
data
<
float
>
(),
clip_x_data
,
len
,
-
1e30
,
1e30
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(clip) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
softmax
<
T
>
(
dev_ctx
.
x_context
(),
clip_x_data
,
out
->
data
<
float
>
(),
x_dims
,
axis
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(softmax2d_forward) return wrong "
...
...
python/paddle/fluid/tests/unittests/xpu/test_matmul_v2_op_xpu.py
浏览文件 @
6a3c8725
...
...
@@ -13,12 +13,11 @@
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
unittest
import
numpy
as
np
from
op_test_xpu
import
XPUOpTest
import
paddle.fluid.core
as
core
import
paddle
...
...
@@ -57,9 +56,7 @@ def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
return
Out
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestMatMulV2Op
(
OpTest
):
class
TestMatMulV2Op
(
XPUOpTest
):
"""
case 1
"""
...
...
@@ -74,10 +71,10 @@ class TestMatMulV2Op(OpTest):
self
.
dtype
=
"float32"
def
setUp
(
self
):
self
.
use_xpu
=
True
self
.
init_kernel_type
()
self
.
config
()
self
.
op_type
=
"matmul_v2"
self
.
use_xpu
=
True
x
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
y_shape
).
astype
(
self
.
dtype
)
# -0.1 ~ 0.1
...
...
@@ -94,31 +91,25 @@ class TestMatMulV2Op(OpTest):
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
0.01
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.1
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
'''
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestMatMuklOp2(TestMatMulV2Op):
"""
case 2
"""
# class TestMatMuklOp2(TestMatMulV2Op):
# """
# case 2
# """
def config(self):
self.x_shape = (100, )
self.y_shape = (1, 3, 2, 100)
self.trans_x = False
self.trans_y = True
#
def config(self):
#
self.x_shape = (100, )
#
self.y_shape = (1, 3, 2, 100)
#
self.trans_x = False
#
self.trans_y = True
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class
TestMatMuklOp3
(
TestMatMulV2Op
):
"""
case 3
...
...
@@ -131,21 +122,18 @@ class TestMatMuklOp3(TestMatMulV2Op):
self
.
trans_y
=
False
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestMatMuklOp4(TestMatMulV2Op):
"""
case 4
"""
# class TestMatMuklOp4(TestMatMulV2Op):
# """
# case 4
# """
# def config(self):
# self.x_shape = (100, )
# self.y_shape = (1, 2, 100, 2)
# self.trans_x = False
# self.trans_y = False
def config(self):
self.x_shape = (100, )
self.y_shape = (1, 2, 100, 2)
self.trans_x = False
self.trans_y = False
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class
TestMatMuklOp5
(
TestMatMulV2Op
):
"""
case 5
...
...
@@ -158,37 +146,29 @@ class TestMatMuklOp5(TestMatMulV2Op):
self
.
trans_y
=
False
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestMatMuklOp6(TestMatMulV2Op):
"""
case 6
"""
def config(self):
self.x_shape = (1, 2, 100, 1)
self.y_shape = (100, )
self.trans_x = True
self.trans_y = False
# class TestMatMuklOp6(TestMatMulV2Op):
# """
# case 6
# """
# def config(self):
# self.x_shape = (1, 2, 102, 1)
# self.y_shape = (102, )
# self.trans_x = True
# self.trans_y = False
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestMatMuklOp7(TestMatMulV2Op):
"""
case 7
"""
# class TestMatMuklOp7(TestMatMulV2Op):
# """
# case 7
# """
def config(self):
self.x_shape = (1, 2, 1, 100)
self.y_shape = (100, )
self.trans_x = False
self.trans_y = False
'''
# def config(self):
# self.x_shape = (1, 2, 1, 100)
# self.y_shape = (100, )
# self.trans_x = False
# self.trans_y = False
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestMatMuklOp8
(
TestMatMulV2Op
):
"""
case 8
...
...
@@ -201,37 +181,97 @@ class TestMatMuklOp8(TestMatMulV2Op):
self
.
trans_y
=
False
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
# class TestMatMuklOp9(TestMatMulV2Op):
# """
# case 9
# """
# def config(self):
# self.x_shape = (1, 1, 1, 100)
# self.y_shape = (2, 1, 2, 100)
# self.trans_x = False
# self.trans_y = True
# class TestMatMuklOp10(TestMatMulV2Op):
# """
# case 10
# """
# def config(self):
# self.x_shape = (1, 1, 25, 4)
# self.y_shape = (1, 2, 4, 25)
# self.trans_x = False
# self.trans_y = False
# class TestMatMuklOp11(TestMatMulV2Op):
# """
# case 11
# """
# def config(self):
# self.x_shape = (2, 1, 2, 100)
# self.y_shape = (1, 1, 100, 2)
# self.trans_x = False
# self.trans_y = False
# class TestMatMuklOp12(TestMatMulV2Op):
# """
# case 12
# """
# def config(self):
# self.x_shape = (2, 1, 4, 25)
# self.y_shape = (1, 1, 4, 25)
# self.trans_x = True
# self.trans_y = False
class
TestMatMuklOp13
(
TestMatMulV2Op
):
"""
case 13
"""
def
config
(
self
):
self
.
x_shape
=
(
2
,
2
,
2
,
5
0
)
self
.
y_shape
=
(
2
,
2
,
2
,
5
0
)
self
.
x_shape
=
(
2
,
2
,
10
,
1
0
)
self
.
y_shape
=
(
2
,
2
,
10
,
1
0
)
self
.
trans_x
=
True
self
.
trans_y
=
False
'''
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestMatMuklOp16(TestMatMulV2Op):
"""
case 16 : to check the gradient for special case
"""
# class TestMatMuklOp14(TestMatMulV2Op):
# """
# case 14_1
# """
def config(self):
self.x_shape = (100)
self.y_shape = (1, 2, 2, 100, 2)
self.trans_x = False
self.trans_y = False
# def config(self):
# self.x_shape = (3, 1, 6, 6)
# self.y_shape = (1, 2, 6, 9)
# self.trans_x = True
# self.trans_y = False
# class TestMatMuklOp15(TestMatMulV2Op):
# """
# case 14_2
# """
# def config(self):
# self.x_shape = (3, 1, 6, 6)
# self.y_shape = (1, 2, 6, 9)
# self.trans_x = False
# self.trans_y = False
# class TestMatMuklOp16(TestMatMulV2Op):
# """
# case 16 : to check the gradient for special case
# """
# def config(self):
# self.x_shape = (100)
# self.y_shape = (1, 2, 2, 100, 2)
# self.trans_x = False
# self.trans_y = False
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class
TestMatMuklOp17
(
TestMatMulV2Op
):
"""
case 17 : to check the gradient for special case
...
...
@@ -242,36 +282,30 @@ class TestMatMuklOp17(TestMatMulV2Op):
self
.
y_shape
=
(
100
)
self
.
trans_x
=
False
self
.
trans_y
=
False
'''
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestMatMulV2API
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
places
=
[
fluid
.
CPUPlace
()]
self
.
places
.
append
(
fluid
.
XPUPlace
(
0
))
def
check_static_result
(
self
,
place
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
input_x
=
fluid
.
data
(
name
=
"input_x"
,
shape
=
[
4
,
3
],
dtype
=
"float32"
)
input_y
=
fluid
.
data
(
name
=
"input_y"
,
shape
=
[
3
,
4
],
dtype
=
"float32"
)
result
=
paddle
.
matmul
(
input_x
,
input_y
)
x_np
=
np
.
random
.
random
([
4
,
3
]).
astype
(
"float32"
)
y_np
=
np
.
random
.
random
([
3
,
4
]).
astype
(
"float32"
)
# class TestMatMuklOpBroadcast1(TestMatMulV2Op):
# """
# case 14_3
# """
exe
=
fluid
.
Executor
(
place
)
fetches
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"input_x"
:
x_np
,
"input_y"
:
y_np
},
fetch_list
=
[
result
])
# def config(self):
# self.x_shape = (3, 1, 10, 10)
# self.y_shape = (1, 2, 10, 10)
# self.trans_x = True
# self.trans_y = True
def
test_static
(
self
):
for
place
in
self
.
places
:
self
.
check_static_result
(
place
=
place
)
# class TestMatMuklOpBroadcast2(TestMatMulV2Op):
# """
# case 14_4
# """
# def config(self):
# self.x_shape = (3, 1, 10, 10)
# self.y_shape = (1, 2, 10, 10)
# self.trans_x = False
# self.trans_y = True
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_one_hot_v2_op_xpu.py
0 → 100644
浏览文件 @
6a3c8725
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
import
sys
sys
.
path
.
append
(
".."
)
from
op_test_xpu
import
XPUOpTest
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
import
time
paddle
.
enable_static
()
class
TestOneHotOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
use_xpu
=
True
self
.
op_type
=
'one_hot_v2'
depth
=
10
depth_np
=
np
.
array
(
10
).
astype
(
'int32'
)
# dimension = 12
x_lod
=
[[
4
,
1
,
3
,
3
]]
x
=
[
np
.
random
.
randint
(
0
,
depth
-
1
)
for
i
in
range
(
sum
(
x_lod
[
0
]))]
x
=
np
.
array
(
x
).
astype
(
'int32'
).
reshape
([
sum
(
x_lod
[
0
])])
out
=
np
.
zeros
(
shape
=
(
np
.
product
(
x
.
shape
),
depth
)).
astype
(
'float32'
)
for
i
in
range
(
np
.
product
(
x
.
shape
)):
out
[
i
,
x
[
i
]]
=
1.0
self
.
inputs
=
{
'X'
:
(
x
,
x_lod
),
'depth_tensor'
:
depth_np
}
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP32
)}
self
.
outputs
=
{
'Out'
:
(
out
,
x_lod
)}
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_dygraph
=
False
)
class
TestOneHotOp_attr
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
'one_hot_v2'
depth
=
10
dimension
=
12
x_lod
=
[[
4
,
1
,
3
,
3
]]
x
=
[
np
.
random
.
randint
(
0
,
depth
-
1
)
for
i
in
range
(
sum
(
x_lod
[
0
]))]
x
=
np
.
array
(
x
).
astype
(
'int32'
).
reshape
([
sum
(
x_lod
[
0
]),
1
])
out
=
np
.
zeros
(
shape
=
(
np
.
product
(
x
.
shape
[:
-
1
]),
1
,
depth
)).
astype
(
'float32'
)
for
i
in
range
(
np
.
product
(
x
.
shape
)):
out
[
i
,
0
,
x
[
i
]]
=
1.0
self
.
inputs
=
{
'X'
:
(
x
,
x_lod
)}
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP32
),
'depth'
:
depth
}
self
.
outputs
=
{
'Out'
:
(
out
,
x_lod
)}
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_dygraph
=
False
)
class
TestOneHotOp_default_dtype
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
'one_hot_v2'
depth
=
10
depth_np
=
np
.
array
(
10
).
astype
(
'int32'
)
dimension
=
12
x_lod
=
[[
4
,
1
,
3
,
3
]]
x
=
[
np
.
random
.
randint
(
0
,
depth
-
1
)
for
i
in
range
(
sum
(
x_lod
[
0
]))]
x
=
np
.
array
(
x
).
astype
(
'int32'
).
reshape
([
sum
(
x_lod
[
0
])])
out
=
np
.
zeros
(
shape
=
(
np
.
product
(
x
.
shape
),
depth
)).
astype
(
'float32'
)
for
i
in
range
(
np
.
product
(
x
.
shape
)):
out
[
i
,
x
[
i
]]
=
1.0
self
.
inputs
=
{
'X'
:
(
x
,
x_lod
),
'depth_tensor'
:
depth_np
}
self
.
attrs
=
{}
self
.
outputs
=
{
'Out'
:
(
out
,
x_lod
)}
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_dygraph
=
False
)
class
TestOneHotOp_default_dtype_attr
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
'one_hot_v2'
depth
=
10
dimension
=
12
x_lod
=
[[
4
,
1
,
3
,
3
]]
x
=
[
np
.
random
.
randint
(
0
,
depth
-
1
)
for
i
in
range
(
sum
(
x_lod
[
0
]))]
x
=
np
.
array
(
x
).
astype
(
'int32'
).
reshape
([
sum
(
x_lod
[
0
]),
1
])
out
=
np
.
zeros
(
shape
=
(
np
.
product
(
x
.
shape
[:
-
1
]),
1
,
depth
)).
astype
(
'float32'
)
for
i
in
range
(
np
.
product
(
x
.
shape
)):
out
[
i
,
0
,
x
[
i
]]
=
1.0
self
.
inputs
=
{
'X'
:
(
x
,
x_lod
)}
self
.
attrs
=
{
'depth'
:
depth
}
self
.
outputs
=
{
'Out'
:
(
out
,
x_lod
)}
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_dygraph
=
False
)
class
TestOneHotOp_out_of_range
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
'one_hot_v2'
depth
=
10
x_lod
=
[[
4
,
1
,
3
,
3
]]
x
=
[
np
.
random
.
choice
([
-
1
,
depth
])
for
i
in
range
(
sum
(
x_lod
[
0
]))]
x
=
np
.
array
(
x
).
astype
(
'int32'
).
reshape
([
sum
(
x_lod
[
0
])])
out
=
np
.
zeros
(
shape
=
(
np
.
product
(
x
.
shape
),
depth
)).
astype
(
'float32'
)
self
.
inputs
=
{
'X'
:
(
x
,
x_lod
)}
self
.
attrs
=
{
'depth'
:
depth
,
'allow_out_of_range'
:
True
}
self
.
outputs
=
{
'Out'
:
(
out
,
x_lod
)}
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_dygraph
=
False
)
class
TestOneHotOpApi
(
unittest
.
TestCase
):
def
test_api
(
self
):
depth
=
10
self
.
_run
(
depth
)
def
test_api_with_depthTensor
(
self
):
depth
=
fluid
.
layers
.
assign
(
input
=
np
.
array
([
10
],
dtype
=
np
.
int32
))
self
.
_run
(
depth
)
def
test_api_with_dygraph
(
self
):
depth
=
10
label
=
np
.
array
([
np
.
random
.
randint
(
0
,
depth
-
1
)
for
i
in
range
(
6
)]).
reshape
([
6
,
1
])
with
fluid
.
dygraph
.
guard
():
one_hot_label
=
fluid
.
one_hot
(
input
=
fluid
.
dygraph
.
to_variable
(
label
),
depth
=
depth
)
def
_run
(
self
,
depth
):
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
one_hot_label
=
fluid
.
one_hot
(
input
=
label
,
depth
=
depth
)
place
=
fluid
.
XPUPlace
(
0
)
label_data
=
np
.
array
([
np
.
random
.
randint
(
0
,
10
-
1
)
for
i
in
range
(
6
)]).
reshape
([
6
,
1
])
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
ret
=
exe
.
run
(
feed
=
{
'label'
:
label_data
,
},
fetch_list
=
[
one_hot_label
],
return_numpy
=
False
)
class
BadInputTestOnehotV2
(
unittest
.
TestCase
):
def
test_error
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
def
test_bad_x
():
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
4
],
append_batch_size
=
False
,
dtype
=
"float32"
)
one_hot_label
=
fluid
.
one_hot
(
input
=
label
,
depth
=
4
)
self
.
assertRaises
(
TypeError
,
test_bad_x
)
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录