functional.py 38.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16
import paddle
17 18
from ..fluid import framework
from ..fluid.dygraph import grad
L
levi131 已提交
19
from ..tensor.creation import assign
20
from ..tensor import reshape, zeros_like, to_tensor
L
levi131 已提交
21
from .utils import _tensors, _stack_tensor_or_return_none, _replace_none_with_zero_tensor
22 23 24 25


@contextlib.contextmanager
def gradient_scope(*var_lists, create_graph=False, allow_unused=False):
26 27 28 29 30
    def grad_fn(ys, xs, v=None, create_graph=create_graph):
        if v is not None:
            assert len(ys) == len(v), (
                f'The argument {v} is expected to be of the same size as the output. '
                f'Here the output is {ys}, and `v` is {v}.')
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
        if allow_unused:
            ys = [
                to_tensor(
                    [0.0], stop_gradient=False) if y is None else y for y in ys
            ]
        return grad(
            ys, xs, v, create_graph=create_graph, allow_unused=allow_unused)

    def return_fn(out):
        if isinstance(out, paddle.Tensor):
            if not create_graph:
                out = out.detach()
            return out
        if isinstance(out, list):
            return list(return_fn(x) for x in out)
        elif isinstance(out, tuple):
            return tuple(return_fn(x) for x in out)
        else:
            assert out is None
            return out

    def process(vl):
53 54
        if vl is None:
            return None
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        out = []
        # If v is treated as constant in the outer scope, its gradient is guaranteed
        # not to be taken beyond this scope. Within this scope, however, v's gradient
        # may be computed. We only need to detach v in this case.
        # Otherwise, v's gradient is valid, and is subject to update beyond this scope.
        # In this case we must not confuse the gradient in the outer scope with the
        # inner one's. Moreover, we need to make sure that the result from the inner
        # scope can flow back to the outer scope. This can be satisfied by extending
        # the original variable with a duplication operation v1 = v so that v still
        # maintains the complete lineage.
        for v in vl:
            if v is None:
                out.append(v)
                continue
            if create_graph and not v.stop_gradient:
                v = assign(v)
            else:
                v = v.detach()
                v.stop_gradient = False
            out.append(v)
        return out

    try:
        var_lists = [process(vl) for vl in var_lists]
        bundle = var_lists + [grad_fn, return_fn]
        yield bundle
    finally:
        pass


@framework.dygraph_only
def vjp(func, inputs, v=None, create_graph=False, allow_unused=False):
    r"""Computes the Vector-Jacobian product, a functional form of
    reverse mode automatic differentiation.

    Args:
L
levi131 已提交
91 92 93 94 95 96 97 98
        func(Callable): `func` takes as input a tensor or a list/tuple
            of tensors and returns a tensor or a list/tuple of tensors.
        inputs(list[Tensor]|tuple[Tensor]|Tensor): used as positional
            arguments to evaluate `func`. `inputs` is accepted as one
            tensor or a list of tensors.
        v(list[Tensor]|tuple[Tensor]|Tensor|None, optional): the
            cotangent vector invovled in the VJP computation. `v` matches
            the size and shape of `func`'s output. Default value is None
99 100
            and in this case is equivalent to all ones the same size
            of `func`'s output.
L
levi131 已提交
101 102 103
        create_graph(bool, optional): if `True`, gradients can be
            evaluated on the results. If `False`, taking gradients on
            the results is invalid. Default value is False.
104 105 106 107 108 109 110 111
        allow_unused(bool, optional): In case that some Tensors of
            `inputs` do not contribute to the computation of the output.
            If `allow_unused` is False, an error will be raised,
            Otherwise, the gradients of the said inputs are returned
            None. Default value is False.

    Returns:
        output(tuple):
L
levi131 已提交
112 113 114
            func_out(list[Tensor]|tuple[Tensor]|Tensor): the output of
                `func(inputs)`
            vjp(list[Tensor]): the pullback results of `v` on `func`
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    Examples:
      .. code-block:: python

        def func(x):
          return paddle.matmul(x, x)

        x = paddle.ones(shape=[2, 2], dtype='float32')
        output, inputs_grad = vjp(func, x)
        print(inputs_grad)
        # [Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #        [[4., 4.],
        #         [4., 4.]])]

        v = paddle.to_tensor([[1.0, 0.0], [0.0, 0.0]])
        output, inputs_grad = vjp(func, x, v)
        print(inputs_grad)
        # [Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #        [[2., 1.],
        #         [1., 0.]])]

        output, inputs_grad = vjp(func, x, v, create_graph=True)
        print(inputs_grad)
        # [Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
        #        [[2., 1.],
        #         [1., 0.]])]

        y = paddle.ones(shape=[2, 2], dtype='float32')
        def func_unused(x, y):
          return paddle.matmul(x, x)

        output, inputs_grad = vjp(func, [x, y], v)
        # ValueError: (InvalidArgument) The 1-th input does not appear in the backward graph. 
        # Please check the input variable or set allow_unused=True to get None result.
        # [Hint: Expected allow_unused_ == true, but received allow_unused_:0 != true:1.]     

        output, inputs_grad = vjp(func, [x, y], v, allow_unused=True)
        print(inputs_grad)
        # [Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #        [[2., 1.],
        #         [1., 0.]]), None]
    """
157 158 159
    xs = _tensors(inputs, "inputs")
    if v is not None:
        v = _tensors(v, "v")
160 161 162 163 164

    with gradient_scope(
            xs, v, create_graph=create_graph,
            allow_unused=allow_unused) as [xs, v, grad_fn, return_fn]:
        outputs = func(*xs)
L
levi131 已提交
165
        ys = _tensors(outputs, "outputs")
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        grads = grad_fn(ys, xs, v)
        outputs, grads = return_fn(outputs), return_fn(grads)

    return outputs, grads


@framework.dygraph_only
def jvp(func, inputs, v=None, create_graph=False, allow_unused=False):
    r"""
    Computes the Jacobian-Vector product for a function at the given
    inputs and a vector in the tangent space induced by the inputs.

    .. note::
        **This API is ONLY available in imperative mode.**

    Args:
L
levi131 已提交
182 183 184 185 186 187 188 189 190 191
        func(Callable): `func` takes as input a tensor or a list/tuple
            of tensors and returns a tensor or a list/tuple of tensors.
        inputs(list[Tensor]|tuple[Tensor]|Tensor): used as positional
            arguments to evaluate `func`. `inputs` is accepted as one
            tensor or a list/tuple of tensors.
        v(list[Tensor]|tuple[Tensor]|Tensor|None, optional): the
            tangent vector invovled in the JVP computation. `v` matches
            the size and shape of `inputs`. `v` is Optional if `func`
            returns a single tensor. Default value is None and in this
            case is equivalent to all ones the same size of `inputs`.
192 193 194 195 196 197 198 199 200 201 202
        create_graph(bool, optional): if `True`, gradients can
            be evaluated on the results. If `False`, taking gradients
            on the results is invalid. Default value is False.
        allow_unused(bool, optional): In case that some Tensors of
            `inputs` do not contribute to the computation of the output.
            If `allow_unused` is False, an error will be raised,
            Otherwise, the gradients of the said inputs are returned
            None. Default value is False.

    Returns:
        output(tuple):
L
levi131 已提交
203 204 205
            func_out(list[Tensor]|tuple[Tensor]|Tensor): the output of
                `func(inputs)`
            jvp(list[Tensor]): the pullback results of `v` on `func`
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

    Examples:
    .. code-block:: python

        def func(x):
          return paddle.matmul(x, x)

        x = paddle.ones(shape=[2, 2], dtype='float32')

        output, inputs_grad = jvp(func, x)
        print(inputs_grad)
        # [Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #        [[2., 2.],
        #         [2., 2.]])]

        v = paddle.to_tensor([[1.0, 0.0], [0.0, 0.0]])
        output, inputs_grad = vjp(func, x, v)
        print(inputs_grad)
        # [Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #        [[1., 1.],
        #         [0., 0.]])]

    """
229 230 231
    xs = _tensors(inputs, "inputs")
    if v is not None:
        v = _tensors(v, "v")
232 233 234 235 236

    with gradient_scope(
            xs, v, create_graph=create_graph,
            allow_unused=allow_unused) as [xs, v, grad_fn, return_fn]:
        outputs = func(*xs)
L
levi131 已提交
237
        ys = _tensors(outputs, "outputs")
238 239 240 241 242 243
        ys_grad = [zeros_like(y) for y in ys]
        xs_grad = grad_fn(ys, xs, ys_grad, create_graph=True)
        ys_grad = grad_fn(xs_grad, ys_grad, v)
        outputs, ys_grad = return_fn(outputs), return_fn(ys_grad)

    return outputs, ys_grad
244 245 246 247 248 249


@framework.dygraph_only
def jacobian(func, inputs, create_graph=False, allow_unused=False):
    ''' 
    .. note::
L
levi131 已提交
250
        **This API is ONLY available in the imperative mode.**
251

L
levi131 已提交
252
    This function computes the Jacobian matrix of `func` with respect to `inputs`.
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

    Parameters:
        func (function): a Python function that takes a Tensor or a Tensor
            list/tuple as inputs and returns a Tensor or a Tensor tuple.
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or 
            Tensor list/tuple of the function ``func``.
        create_graph (bool, optional): whether to create the gradient graphs
            of the computing process. When it is True, higher order derivatives
            are supported to compute; when it is False, the gradient graphs of
            the computing process would be discarded. Defaults to ``False``.
        allow_unused (bool, optional): whether to raise error or return None if
            some Tensors of `inputs` are unreachable in the graph. Error would
            be raised if allow_unused=False, and None would be returned as
            their gradients if allow_unused=True. Default False.
    Returns:
        Jacobian (Tensor or nested tuple of Tensors): if function ``func``
        takes a Tensor as inputs and returns a Tensor as outputs, Jacobian
        will be a single Tensor containing the Jacobian matrix for the
        linearized inputs and outputs. If one of the inputs and outputs is
        a Tensor, and another is a Tensor list/tuple, then the Jacobian will
        be a tuple of Tensors. If both of inputs and outputs are Tensor
        list/tuple, then the Jacobian will be a tuple of tuple of Tensors
        where ``Jacobian[i][j]`` will contain the Jacobian matrix of the
        linearized ``i``th output and ``j``th input and will have same
        dtype and device as the corresponding input. ``Jacobian[i][j]`` will
        have as size ``m * n``, where ``m`` and ``n`` denote the numbers of
        elements of ``i``th output and ``j``th input respectively.


    Examples 1:
        .. code-block:: python

            import paddle

            def func(x):
                return paddle.matmul(x, x)
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
            x = paddle.ones(shape=[2, 2], dtype='float32')
            x.stop_gradient = False
            jacobian = paddle.autograd.jacobian(func, x)
            print(jacobian)
            # Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[2., 1., 1., 0.],
            #         [1., 2., 0., 1.],
            #         [1., 0., 2., 1.],
            #         [0., 1., 1., 2.]])

    Examples 2:
        .. code-block:: python

            import paddle

            def func(x, y):
                return paddle.matmul(x, y)
307

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
            x = paddle.ones(shape=[2, 2], dtype='float32')
            y = paddle.ones(shape=[2, 2], dtype='float32') * 2
            x.stop_gradient = False
            y.stop_gradient = False
            jacobian = paddle.autograd.jacobian(func, [x, y], create_graph=True)
            print(jacobian)
            # (Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
            #        [[2., 2., 0., 0.],
            #         [2., 2., 0., 0.],
            #         [0., 0., 2., 2.],
            #         [0., 0., 2., 2.]]), 
            #  Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
            #        [[1., 0., 1., 0.],
            #         [0., 1., 0., 1.],
            #         [1., 0., 1., 0.],
            #         [0., 1., 0., 1.]]))

    Examples 3:
        .. code-block:: python

            import paddle

            def func(x, y):
                return paddle.matmul(x, y), x * x

            x = paddle.ones(shape=[2, 2], dtype='float32')
            y = paddle.ones(shape=[2, 2], dtype='float32') * 2
            x.stop_gradient = False
            y.stop_gradient = False
            jacobian = paddle.autograd.jacobian(func, [x, y], allow_unused=True)
            print(jacobian)
            # ((Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[2., 2., 0., 0.],
            #         [2., 2., 0., 0.],
            #         [0., 0., 2., 2.],
            #         [0., 0., 2., 2.]]),
            #   Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[1., 0., 1., 0.],
            #         [0., 1., 0., 1.],
            #         [1., 0., 1., 0.],
            #         [0., 1., 0., 1.]])),
            #  (Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[2., 0., 0., 0.],
            #         [0., 2., 0., 0.],
            #         [0., 0., 2., 0.],
            #         [0., 0., 0., 2.]]), None))

    '''
L
levi131 已提交
356 357
    inputs = _tensors(inputs, "inputs")
    outputs = _tensors(func(*inputs), "outputs")
358 359
    fin_size = len(inputs)
    fout_size = len(outputs)
360
    flat_outputs = tuple(reshape(output, shape=[-1]) for output in outputs)
361 362 363 364
    jacobian = tuple()
    for i, flat_output in enumerate(flat_outputs):
        jac_i = list([] for _ in range(fin_size))
        for k in range(len(flat_output)):
365
            row_k = grad(
366 367 368 369 370 371 372
                flat_output[k],
                inputs,
                create_graph=create_graph,
                retain_graph=True,
                allow_unused=allow_unused)
            for j in range(fin_size):
                jac_i[j].append(
373
                    reshape(
374 375 376 377 378 379 380 381 382 383 384 385
                        row_k[j], shape=[-1])
                    if isinstance(row_k[j], paddle.Tensor) else None)
        jacobian += (tuple(
            _stack_tensor_or_return_none(jac_i_j) for jac_i_j in jac_i), )
    if fin_size == 1 and fout_size == 1:
        return jacobian[0][0]
    elif fin_size == 1 and fout_size != 1:
        return tuple(jacobian[i][0] for i in range(fout_size))
    elif fin_size != 1 and fout_size == 1:
        return jacobian[0]
    else:
        return jacobian
386 387


388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
@framework.dygraph_only
def batch_jacobian(func, inputs, create_graph=False, allow_unused=False):
    ''' 
    .. note::
        **This API is ONLY available in the imperative mode.**

    This function computes the batch Jacobian matrix of `func` with respect to `inputs`.
    Noted that the first dimension of inputs is batch size.

    Parameters:
        func (function): a Python function that takes a Tensor or a Tensor
            list/tuple as inputs(the first dimension is batch size) and 
            returns a Tensor or a Tensor tuple.
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or 
            Tensor list/tuple of the function ``func``, Noted that
            the first dimension of inputs is batch size.
        create_graph (bool, optional): whether to create the gradient graphs
            of the computing process. When it is True, higher order derivatives
            are supported to compute; when it is False, the gradient graphs of
            the computing process would be discarded. Defaults to ``False``.
        allow_unused (bool, optional): whether to raise error or return None if
            some Tensors of `inputs` are unreachable in the graph. Error would
            be raised if allow_unused=False, and None would be returned as
            their gradients if allow_unused=True. Default False.
    Returns:
        Jacobian (Tensor or nested tuple of Tensors): if function ``func``
        takes a Tensor as inputs and returns a Tensor as outputs, Jacobian
        will be a single Tensor containing the Jacobian matrix for the
        linearized inputs and outputs. If one of the inputs and outputs is
        a Tensor, and another is a Tensor list/tuple, then the Jacobian will
        be a tuple of Tensors. If both of inputs and outputs are Tensor
        list/tuple, then the Jacobian will be a tuple of tuple of Tensors.
        Noted that the first dimension of inputs is batch size.
        
        For example,
        the inputs shape and outputs shape of function ``func` is [batch_size, num] 
        and [batch_size, num] respectively, then the Jacobian will be a Tensor with
        a shape of [num, batch_size * num], where ``Jacobian[i][j]`` will contain 
        the Jacobian matrix of the ``i``th column output and the ``j``th input and 
        will have same dtype and device as the corresponding input.
        Other situations can be deduced by analogy.

    Examples 1:
        .. code-block:: python

            import paddle

            x = paddle.ones(shape=(4, 2), dtype='float64')
            weight = paddle.ones(shape=(2, 4), dtype='float64')
            y = paddle.ones(shape=(4, 2), dtype='float64')

            def func(x):
                return paddle.matmul(paddle.matmul(x, weight), y)

            x.stop_gradient = False
            batch_jacobian = paddle.autograd.batch_jacobian(func, x)
            print(batch_jacobian)
            # Tensor(shape=[2, 8], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #      [[4., 4., 4., 4., 4., 4., 4., 4.],
            #       [4., 4., 4., 4., 4., 4., 4., 4.]])

    Examples 2:
        .. code-block:: python

            import paddle

            x = paddle.ones(shape=(4, 2), dtype='float64')
            weight = paddle.ones(shape=(2, 4), dtype='float64')
            y = paddle.ones(shape=(4, 2), dtype='float64')

            def func(x):
                return paddle.matmul(paddle.matmul(x, weight), y), x * x

            x.stop_gradient = False
            batch_jacobian = paddle.autograd.batch_jacobian(func, x) 
            print(batch_jacobian)    
            # (Tensor(shape=[2, 8], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #       [[4., 4., 4., 4., 4., 4., 4., 4.],
            #        [4., 4., 4., 4., 4., 4., 4., 4.]]), Tensor(shape=[2, 8], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #       [[2., 0., 2., 0., 2., 0., 2., 0.],
            #        [0., 2., 0., 2., 0., 2., 0., 2.]]))

    Examples 3:
        .. code-block:: python

            import paddle

            x = paddle.ones(shape=(4, 2), dtype='float64')
            weight = paddle.ones(shape=(2, 4), dtype='float64')
            y = paddle.ones(shape=(4, 2), dtype='float64')

            def func(x, y):
                return x * y

            x.stop_gradient = False
            y.stop_gradient = False
            batch_jacobian = paddle.autograd.batch_jacobian(func, [x, y])
            print(batch_jacobian)
            # (Tensor(shape=[2, 8], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #       [[1., 0., 1., 0., 1., 0., 1., 0.],
            #        [0., 1., 0., 1., 0., 1., 0., 1.]]), Tensor(shape=[2, 8], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #       [[1., 0., 1., 0., 1., 0., 1., 0.],
            #        [0., 1., 0., 1., 0., 1., 0., 1.]]))
   
    '''
    inputs = _tensors(inputs, "inputs")
    outputs = _tensors(func(*inputs), "outputs")
    batch_size = inputs[0].shape[0]
    for input in inputs:
        assert input.shape[
            0] == batch_size, "The first dimension of input should equals to the same batch size!"
    for output in outputs:
        assert output.shape[
            0] == batch_size, "The first dimension of output should equals to the same batch size!"
    fin_size = len(inputs)
    fout_size = len(outputs)
    flat_outputs = tuple(
        reshape(
            output, shape=[batch_size, -1]) for output in outputs)
    jacobian = tuple()
    for i, flat_output in enumerate(flat_outputs):
        jac_i = list([] for _ in range(fin_size))
        for k in range(flat_output.shape[1]):
            row_k = grad(
                flat_output[:, k],
                inputs,
                create_graph=create_graph,
                retain_graph=True,
                allow_unused=allow_unused)
            for j in range(fin_size):
                jac_i[j].append(
                    reshape(
                        row_k[j], shape=[-1])
                    if isinstance(row_k[j], paddle.Tensor) else None)
        jacobian += (tuple(
            _stack_tensor_or_return_none(jac_i_j) for jac_i_j in jac_i), )
    if fin_size == 1 and fout_size == 1:
        return jacobian[0][0]
    elif fin_size == 1 and fout_size != 1:
        return tuple(jacobian[i][0] for i in range(fout_size))
    elif fin_size != 1 and fout_size == 1:
        return jacobian[0]
    else:
        return jacobian


@framework.dygraph_only
def batch_hessian(func, inputs, create_graph=False, allow_unused=False):
    ''' 
    .. note::
        **This API is ONLY available in the imperative mode.**

    This function computes the batch Hessian matrix of `func` with respect to `inputs`.
    Noted that the first dimension of inputs is batch size.

    Parameters:
        func (function): a Python function that takes a Tensor or a Tensor
            list/tuple as inputs(the first dimension is batch size) and
            returns a Tensor with shape [batch_size, 1].
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or 
            Tensor list/tuple of the function ``func``.
            Noted that the first dimension of inputs is batch size.
        create_graph (bool, optional): whether to create the gradient graphs
            of the computing process. When it is True, higher order derivatives
            are supported to compute; when it is False, the gradient graphs of
            the computing process would be discarded. Defaults to ``False``.
        allow_unused (bool, optional): whether to raise error or return None if
            some Tensors of `inputs` are unreachable in the graph. Error would
            be raised if allow_unused=False, and None would be returned as
            their gradients if allow_unused=True. Default False.
    Returns:
        Hessian (Tensor or a tuple of tuple of Tensors): if function ``func``
        takes a Tensor as ``inputs``, Hessian will be a single Tensor containing
        the Hessian matrix for the linearized ``inputs`` Tensor. If function
        ``func`` takes a Tensor list/tuple as ``inputs``, then the Hessian will
        be a tuple of tuple of Tensors. Noted that the first dimension of inputs 
        is batch size and the execution step is to obtain the result of the 
        first order differentiation, and then differentiate the batch input.

        For example,
        the inputs shape and outputs shape of function ``func` is [batch_size, num] 
        and [batch_size, 1] respectively, then the batched Hessian will be a Tensor with
        a shape of [num, batch_size * num].
        
        Why the final shape in this case is that?
        because batch_hessian will create a inner func(the wrapper of paddle.grad() func)
        to computes the sum of gradients of `outputs` with respect to each `inputs`,
        this inner func will get the first order differentiation and shape is [batch_size, num], 
        then call batch_jacobian to compute jacobian between the first order differentiation
        and the origin inputs. The final result ``Hessian[i][j]`` will contain the Jacobian 
        matrix of the ``i``th column output(Noted that this output means the first order 
        differentiation) and the ``j``th input and will have same dtype and device as the 
        corresponding input. Other situations can be deduced by analogy.
    

    Examples 1:
        .. code-block:: python

            import paddle

            x = paddle.ones(shape=(4, 2), dtype='float64')
            weight = paddle.ones(shape=(2, 4), dtype='float64')
            y = paddle.ones(shape=(4, 2), dtype='float64')

            def func(x):
                return paddle.matmul(x * x, weight)[:, 0:1]
            
           
            x.stop_gradient = False
            batch_hessian = paddle.autograd.batch_hessian(func, x)
            print(batch_hessian)
            # Tensor(shape=[2, 8], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #      [[2., 0., 2., 0., 2., 0., 2., 0.],
            #       [0., 2., 0., 2., 0., 2., 0., 2.]])

    Examples 2:
        .. code-block:: python

            import paddle

            x = paddle.ones(shape=(4, 2), dtype='float64')
            weight = paddle.ones(shape=(2, 4), dtype='float64')
            y = paddle.ones(shape=(4, 2), dtype='float64')

            def func(x, y):
                return paddle.matmul(x * x * y * y, weight)[:, 0:1]
            
            x.stop_gradient = False
            y.stop_gradient = False
            batch_hessian = paddle.autograd.batch_hessian(func, [x, y])
            print(batch_hessian)
            # ((Tensor(shape=[2, 8], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #        [[2., 0., 2., 0., 2., 0., 2., 0.],
            #         [0., 2., 0., 2., 0., 2., 0., 2.]]), 
            #   Tensor(shape=[2, 8], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #        [[4., 0., 4., 0., 4., 0., 4., 0.],
            #         [0., 4., 0., 4., 0., 4., 0., 4.]])), 
            #  (Tensor(shape=[2, 8], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #        [[4., 0., 4., 0., 4., 0., 4., 0.],
            #         [0., 4., 0., 4., 0., 4., 0., 4.]]), 
            #   Tensor(shape=[2, 8], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #        [[2., 0., 2., 0., 2., 0., 2., 0.],
            #         [0., 2., 0., 2., 0., 2., 0., 2.]])))
            

    Examples 3:
        .. code-block:: python

            import paddle

            x = paddle.ones(shape=(4, 2), dtype='float64')
            weight = paddle.ones(shape=(2, 4), dtype='float64')
            y = paddle.ones(shape=(4, 2), dtype='float64')
            
            def func(x, y):
                return paddle.matmul(x * x, weight)[:, 0:1]

            x.stop_gradient = False
            y.stop_gradient = False
            batch_hessian = paddle.autograd.batch_hessian(func, [x, y], allow_unused=True)
            print(batch_hessian)
            # ((Tensor(shape=[2, 8], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #        [[2., 0., 2., 0., 2., 0., 2., 0.],
            #         [0., 2., 0., 2., 0., 2., 0., 2.]]), None), (None, None))

    '''
    inputs = _tensors(inputs, "inputs")
    outputs = func(*inputs)
    batch_size = inputs[0].shape[0]
    for input in inputs:
        assert input.shape[
            0] == batch_size, "The first dimension of input should equals to the same batch size!"
    assert isinstance(outputs, paddle.Tensor) and outputs.shape == [
        batch_size, 1
    ], "The function to compute batched Hessian matrix should return a Tensor of shape [batch_size, 1]"

    def jac_func(*ins):
        grad_inputs = grad(
            outputs,
            ins,
            create_graph=True,
            retain_graph=True,
            allow_unused=allow_unused)
        return tuple(
            _replace_none_with_zero_tensor(grad_inputs[i], inputs[i])
            for i in range(len(inputs)))

    return batch_jacobian(
        jac_func, inputs, create_graph=create_graph, allow_unused=allow_unused)


679 680 681 682
@framework.dygraph_only
def hessian(func, inputs, create_graph=False, allow_unused=False):
    ''' 
    .. note::
L
levi131 已提交
683
        **This API is ONLY available in the imperative mode.**
684

L
levi131 已提交
685
    This function computes the Hessian matrix of `func` with respect to `inputs`.
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

    Parameters:
        func (function): a Python function that takes a Tensor or a Tensor
            list/tuple as inputs and returns a Tensor with a single element.
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or 
            Tensor list/tuple of the function ``func``.
        create_graph (bool, optional): whether to create the gradient graphs
            of the computing process. When it is True, higher order derivatives
            are supported to compute; when it is False, the gradient graphs of
            the computing process would be discarded. Defaults to ``False``.
        allow_unused (bool, optional): whether to raise error or return None if
            some Tensors of `inputs` are unreachable in the graph. Error would
            be raised if allow_unused=False, and None would be returned as
            their gradients if allow_unused=True. Default False.
    Returns:
        Hessian (Tensor or a tuple of tuple of Tensors): if function ``func``
        takes a Tensor as ``inputs``, Hessian will be a single Tensor containing
        the Hessian matrix for the linearized ``inputs`` Tensor. If function
        ``func`` takes a Tensor list/tuple as ``inputs``, then the Hessian will
        be a tuple of tuple of Tensors where ``Hessian[i][j]`` will contain the
        Hessian matrix of the ``i``th input and ``j``th input with size ``m * n``.
        Here ``m`` and ``n`` denote the number of elements of the ``i`` th input
        and the ``j`` th input respectively.

    Examples 1:
        .. code-block:: python

            import paddle

            def func(x):
                return paddle.sum(paddle.matmul(x, x))
            
            x = paddle.ones(shape=[2, 2], dtype='float32')
            x.stop_gradient = False
            hessian = paddle.autograd.hessian(func, x)
            print(hessian)
            # Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[2., 1., 1., 0.],
            #         [1., 0., 2., 1.],
            #         [1., 2., 0., 1.],
            #         [0., 1., 1., 2.]])

    Examples 2:
        .. code-block:: python

            import paddle

            def func(x, y):
                return paddle.sum(paddle.matmul(x, y))
            
            x = paddle.ones(shape=[2, 2], dtype='float32')
            y = paddle.ones(shape=[2, 2], dtype='float32')
            x.stop_gradient = False
            y.stop_gradient = False
            hessian = paddle.autograd.hessian(func, [x, y])
            print(hessian)
            # ((Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[0., 0., 0., 0.],
            #         [0., 0., 0., 0.],
            #         [0., 0., 0., 0.],
            #         [0., 0., 0., 0.]]),
            #   Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[1., 1., 0., 0.],
            #         [0., 0., 1., 1.],
            #         [1., 1., 0., 0.],
            #         [0., 0., 1., 1.]])),
            #  (Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[1., 0., 1., 0.],
            #         [1., 0., 1., 0.],
            #         [0., 1., 0., 1.],
            #         [0., 1., 0., 1.]]),
            #   Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[0., 0., 0., 0.],
            #         [0., 0., 0., 0.],
            #         [0., 0., 0., 0.],
            #         [0., 0., 0., 0.]])))

    Examples 3:
        .. code-block:: python

            import paddle

            def func(x, y):
                return paddle.sum(paddle.matmul(x, x))
            
            x = paddle.ones(shape=[2, 2], dtype='float32')
            y = paddle.ones(shape=[2, 2], dtype='float32')
            x.stop_gradient = False
            y.stop_gradient = False
            hessian = paddle.autograd.hessian(func, [x, y], allow_unused=True)
            print(hessian)
            # ((Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[2., 1., 1., 0.],
            #         [1., 0., 2., 1.],
            #         [1., 2., 0., 1.],
            #         [0., 1., 1., 2.]]), None), (None, None))

    '''
L
levi131 已提交
784
    inputs = _tensors(inputs, "inputs")
785 786 787 788 789 790
    outputs = func(*inputs)
    assert isinstance(outputs, paddle.Tensor) and outputs.shape == [
        1
    ], "The function to compute Hessian matrix should return a Tensor with a single element"

    def jac_func(*ins):
791
        grad_inputs = grad(
792 793 794 795 796 797 798 799 800 801 802
            outputs,
            ins,
            create_graph=True,
            retain_graph=True,
            allow_unused=allow_unused)
        return tuple(
            _replace_none_with_zero_tensor(grad_inputs[i], inputs[i])
            for i in range(len(inputs)))

    return jacobian(
        jac_func, inputs, create_graph=create_graph, allow_unused=allow_unused)
L
levi131 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906


@framework.dygraph_only
def vhp(func, inputs, v=None, create_graph=False, allow_unused=False):
    ''' 
    .. note::
        **This API is ONLY available in the imperative mode.**

    This function computes the product between a vector ``v`` and the
    Hessian matrix of `func` with respect to `inputs`.

    Parameters:
        func (function): a Python function that takes a Tensor or a Tensor
            list/tuple as inputs and returns a Tensor with a single element.
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or 
            Tensor list/tuple of the function ``func``.
        v (Tensor|list(Tensor)|tuple(Tensor)|None, optional): the vector used
            to compute vector hessian product. ``v`` should have same shape
            and dtype with ``inputs``. If ``v`` is None, it will be set as
            Tensor|list(Tensor) with all elements 1. Defaults to "None".
        create_graph (bool, optional): whether to create the gradient graphs
            of the computing process. When it is True, higher order derivatives
            are supported to compute; when it is False, the gradient graphs of
            the computing process would be discarded. Defaults to ``False``.
        allow_unused (bool, optional): whether to raise error or return None if
            some Tensors of `inputs` are unreachable in the graph. Error would
            be raised if allow_unused=False, and None would be returned as
            their gradients if allow_unused=True. Default False.
    Returns:
        output (tuple): tuple with:
            func_output (Tensor): output of ``func(inputs)``
            vhp (list(Tensor)): result of the vector hessian product
            with the same shape and dtype as the inputs.
    Examples 1:
        .. code-block:: python
            import paddle
            def func(x):
                return paddle.sum(paddle.matmul(x, x))
            
            x = paddle.ones(shape=[2, 2], dtype='float32')
            x.stop_gradient = False
            vx = paddle.ones(shape=[2, 2], dtype='float32') * 2
            vhp_rslt = paddle.autograd.vhp(func, x, v=vx)
            print(vhp_rslt)
            # (Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
            #        [8.]),
            #  Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[8., 8.],
            #         [8., 8.]]))

    Examples 2:
        .. code-block:: python
            import paddle
            def func(x):
                return paddle.sum(paddle.matmul(x, x))
            
            x = paddle.ones(shape=[2, 2], dtype='float32')
            x.stop_gradient = False
            vhp_rslt = paddle.autograd.vhp(func, x)
            print(vhp_rslt)
            # (Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
            #        [8.]),
            #  Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[4., 4.],
            #         [4., 4.]]))

    Examples 3:
        .. code-block:: python
            import paddle
            def func(x, y):
                return paddle.sum(paddle.matmul(x, x))
            
            x = paddle.ones(shape=[2, 2], dtype='float32')
            x.stop_gradient = False
            y = paddle.ones(shape=[2, 2], dtype='float32')
            y.stop_gradient = False
            vx = paddle.ones(shape=[2, 2], dtype='float32') * 2
            vy = paddle.ones(shape=[2, 2], dtype='float32') * 3
            vhp_rslt = paddle.autograd.vhp(func, [x, y], v=[vx, vy], allow_unused=True)
            print(vhp_rslt)
            # (Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
            #        [8.]),
            # [Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[8., 8.],
            #         [8., 8.]]), None])
    '''
    xs = _tensors(inputs, "inputs")
    if v is not None:
        v = _tensors(v, "v")

    with gradient_scope(
            xs, v, create_graph=create_graph,
            allow_unused=allow_unused) as [xs, v, grad_fn, return_fn]:
        outputs = func(*xs)
        ys = _tensors(outputs, "outputs")
        assert len(ys) == 1 and isinstance(
            ys[0], paddle.Tensor
        ) and ys[0].shape == [
            1
        ], "The function to compute vhp should return a Tensor with a single element"
        jac = grad_fn(ys, xs, create_graph=True)
        vhp = grad_fn(jac, xs, v)
        outputs, vhp = return_fn(outputs), return_fn(vhp)
    return outputs, vhp