section_worker.cc 8.3 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
lilong12 已提交
13
#include <float.h>
14

H
hutuxian 已提交
15
#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/executor_gc_helper.h"
H
hutuxian 已提交
17 18 19 20 21
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace framework {

22 23
class TrainerDesc;

L
lilong12 已提交
24 25
uint64_t SectionWorker::batch_id_(0);

26
void SectionWorker::Initialize(const TrainerDesc &desc) {
H
hutuxian 已提交
27
  dev_ctx_ = platform::DeviceContextPool::Instance().Get(place_);
28 29
  program_.reset(
      new ProgramDesc(desc.section_param().section_config().program_desc()));
30
  for (auto &op_desc : program_->Block(0).AllOps()) {
H
hutuxian 已提交
31 32
    ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  for (auto &op : ops_) {
    // cache the op type during the init part
    // reduce unnecessary op visit during running
    int op_role = op->Attr<int>("op_role");
    if ((op_role == static_cast<int>(OpRole::kForward)) ||
        (op_role == (static_cast<int>(OpRole::kForward) |
                     static_cast<int>(OpRole::kLoss))) ||
        (op_role == static_cast<int>(OpRole::kLRSched))) {
      // forward ops and lr schedule ops, used for first micro step
      forward_and_lr_ops_.push_back(op.get());
      if ((op_role != static_cast<int>(OpRole::kLRSched))) {
        // only forward ops, used for second and later micro steps
        forward_ops_.push_back(op.get());
      }
    } else if ((op_role == static_cast<int>(OpRole::kBackward)) ||
               (op_role == (static_cast<int>(OpRole::kBackward) |
                            static_cast<int>(OpRole::kLoss)))) {
      backward_ops_.push_back(op.get());
    } else if (op_role == static_cast<int>(OpRole::kOptimize)) {
      optimizer_ops_.push_back(op.get());
    } else {
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "The op %s is None of LRSched, Forward, Backward or Optimize.",
          op->Type()));
    }
  }

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  // if not 1F1B scheduler
  if (schedule_mode_ != 1) return;

  bool is_first_stage = (pipeline_stage_ == 0);
  int BACKWARD = static_cast<int>(OpRole::kBackward);
  for (auto &op : ops_) {
    int op_role = op->Attr<int>("op_role");
    auto op_type = op->Type();

    // pipeline backward send op
    if (op_role != BACKWARD) continue;
    if (op_type != "send_v2" && op_type != "partial_send") continue;

    auto var_name = op->InputVars()[0];
    VLOG(3) << "Pipeline backward send var " << var_name;
76 77
    PADDLE_ENFORCE_NE(is_first_stage,
                      true,
78 79 80 81 82 83 84 85 86 87 88 89 90
                      platform::errors::PreconditionNotMet(
                          "The first pipeline stage must do not have a "
                          "backward send var, please check var %s",
                          var_name));

    backward_send_vars_.push_back(var_name);
    skip_vars_.push_back(var_name);
  }
}

void SectionWorker::PrepareUnusedVar() {
  VLOG(5) << "begin prepare the unsed vars";
  unused_vars_ = GetUnusedVars(program_->Block(0), ops_, skip_vars_);
H
hutuxian 已提交
91 92
}

93
void SectionWorker::RunForward(
94 95
    int micro_id,
    std::unique_ptr<GarbageCollector> &gc,
96 97
    std::unordered_map<const OperatorBase *, std::vector<std::string>>
        &unused_vars_) {
98 99 100 101 102 103 104
  std::vector<OperatorBase *> &forward_tmp =
      micro_id == 0 ? forward_and_lr_ops_ : forward_ops_;
  for (auto &op : forward_tmp) {
    VLOG(3) << "Forward: running op " << op->Type() << " for micro-batch "
            << micro_id;
    op->Run(*microbatch_scopes_[micro_id], place_);
    if (gc) {
105 106
      DeleteUnusedTensors(
          *microbatch_scopes_[micro_id], op, unused_vars_, gc.get());
107 108 109 110 111
    }
  }
}

void SectionWorker::RunBackward(
112 113
    int micro_id,
    std::unique_ptr<GarbageCollector> &gc,
114 115
    std::unordered_map<const OperatorBase *, std::vector<std::string>>
        &unused_vars_) {
116 117 118 119 120
  for (auto &op : backward_ops_) {
    VLOG(3) << "Backward: running op " << op->Type() << " for micro-batch "
            << micro_id;
    op->Run(*microbatch_scopes_[micro_id], place_);
    if (gc) {
121 122
      DeleteUnusedTensors(
          *microbatch_scopes_[micro_id], op, unused_vars_, gc.get());
123 124 125 126 127 128 129 130
    }
  }
}

void SectionWorker::RunUpdate(
    std::unique_ptr<GarbageCollector> &gc,
    std::unordered_map<const OperatorBase *, std::vector<std::string>>
        &unused_vars_) {
131 132 133 134
  for (auto &op : optimizer_ops_) {
    VLOG(3) << "Update: running op " << op->Type();
    op->Run(*microbatch_scopes_[num_microbatches_ - 1], place_);
    if (gc) {
135 136 137 138
      DeleteUnusedTensors(*microbatch_scopes_[num_microbatches_ - 1],
                          op,
                          unused_vars_,
                          gc.get());
139 140 141 142
    }
  }
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
void SectionWorker::RunFThenB(std::unique_ptr<GarbageCollector> &gc) {
  // F-then-B scheduler which runs Forward phase for all microbatches,
  // then runs Backward phase for all microbatches.
  // step1: run forward
  for (int i = 0; i < num_microbatches_; ++i) {
    RunForward(i, gc, unused_vars_);
  }
  // step2: run backward
  for (int i = 0; i < num_microbatches_; ++i) {
    RunBackward(i, gc, unused_vars_);
  }
  // step3: run update
  RunUpdate(gc, unused_vars_);
}

void SectionWorker::Run1F1B(std::unique_ptr<GarbageCollector> &gc) {
  // 1F1B scheduler, which runs forward phase and backward phase altertively
  // after startup phase. For a stage, the number of microbatches for
  // startup is num_pipeline_stages_ - pipeline_stage_ - 1, where
  // num_pipeline_stages_ is the total number of pipeline stages and
  // pipeline_stage_ is the pipeline stage of the current device.
  auto startup_steps = num_pipeline_stages_ - pipeline_stage_ - 1;
  VLOG(3) << "startup_steps:" << startup_steps
          << ", num_stages: " << num_pipeline_stages_
          << ", stage:" << pipeline_stage_;
  PADDLE_ENFORCE_GT(
169 170
      num_microbatches_,
      startup_steps,
171 172 173
      platform::errors::InvalidArgument(
          "To use pipeline with 1F1B scheduler, please make sure number of "
          "microbatches (%d) is than startup steps (%d).",
174 175
          num_microbatches_,
          startup_steps));
176 177 178 179 180 181 182
  int fw_step = 0;
  int bw_step = 0;

  // startup phase
  while (fw_step < startup_steps) {
    RunForward(fw_step, gc, unused_vars_);
    fw_step += 1;
183
    VLOG(2) << "micro steps fw_step:" << fw_step;
184 185 186 187 188 189 190 191
  }

  // 1f1b phase
  while (fw_step < num_microbatches_) {
    RunForward(fw_step, gc, unused_vars_);

    // delete backward send var at step=(bw_step - 2)
    if (gc && bw_step >= 2) {
192 193
      DeleteUnusedTensors(
          *microbatch_scopes_[bw_step - 2], backward_send_vars_, gc.get());
194 195 196 197 198 199
    }

    RunBackward(bw_step, gc, unused_vars_);

    fw_step += 1;
    bw_step += 1;
200
    VLOG(2) << "micro steps fw_step:" << fw_step << ", bw_step:" << bw_step;
201 202 203 204 205 206 207
  }

  int reserve_bw_send_step = bw_step - 2;
  // backward phase
  while (bw_step < num_microbatches_) {
    RunBackward(bw_step, gc, unused_vars_);
    bw_step += 1;
208
    VLOG(2) << "micro steps  bw_step:" << bw_step;
209 210
  }

211
  VLOG(2) << "run update";
212 213 214 215 216 217
  RunUpdate(gc, unused_vars_);

  if (gc) {
    // NOTE(wangxi): program must add sync backward send comm at update
    // delete backward send var
    for (int i = reserve_bw_send_step; i < num_microbatches_; ++i) {
218 219
      DeleteUnusedTensors(
          *microbatch_scopes_[i], backward_send_vars_, gc.get());
220 221
    }
  }
222 223
}

H
hutuxian 已提交
224
void SectionWorker::TrainFiles() {
225
  VLOG(5) << "begin section_worker TrainFiles";
226
  VLOG(2) << "mini batch steps:" << batch_id_;
H
hutuxian 已提交
227

228
  int64_t max_memory_size = GetEagerDeletionThreshold();
L
lilong12 已提交
229
  std::unique_ptr<GarbageCollector> gc;
230
  if (max_memory_size >= 0) {
231
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
232 233
    if (platform::is_gpu_place(place_)) {
      if (IsFastEagerDeletionModeEnabled()) {
234
        gc.reset(new UnsafeFastGPUGarbageCollector(place_, max_memory_size));
235
      }
H
hutuxian 已提交
236
    }
L
lilong12 已提交
237
#endif
B
Baibaifan 已提交
238
  }  // max_memory_size >= 0
H
hutuxian 已提交
239

240
  if (schedule_mode_ == 0) {
241
    RunFThenB(gc);
242
  } else {
243
    Run1F1B(gc);
H
hutuxian 已提交
244
  }
245

246 247
  dev_ctx_->Wait();
  ++batch_id_;
H
hutuxian 已提交
248
}
249

H
hutuxian 已提交
250 251 252
}  // namespace framework
}  // namespace paddle
#endif