Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
04fdb10a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
04fdb10a
编写于
9月 14, 2021
作者:
Y
Yuang Liu
提交者:
GitHub
9月 14, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[hybrid performance] Optimize Pipeline Scheduler (#35680)
上级
e46ffaf2
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
53 addition
and
40 deletion
+53
-40
paddle/fluid/framework/device_worker.h
paddle/fluid/framework/device_worker.h
+4
-0
paddle/fluid/framework/section_worker.cc
paddle/fluid/framework/section_worker.cc
+49
-40
未找到文件。
paddle/fluid/framework/device_worker.h
浏览文件 @
04fdb10a
...
...
@@ -601,6 +601,10 @@ class SectionWorker : public DeviceWorker {
std
::
vector
<
std
::
string
>
backward_send_vars_
;
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_
;
std
::
vector
<
OperatorBase
*>
forward_and_lr_ops_
;
std
::
vector
<
OperatorBase
*>
forward_ops_
;
std
::
vector
<
OperatorBase
*>
backward_ops_
;
std
::
vector
<
OperatorBase
*>
optimizer_ops_
;
std
::
shared_ptr
<
framework
::
ProgramDesc
>
program_
;
std
::
unordered_map
<
const
OperatorBase
*
,
std
::
vector
<
std
::
string
>>
unused_vars_
;
...
...
paddle/fluid/framework/section_worker.cc
浏览文件 @
04fdb10a
...
...
@@ -31,6 +31,33 @@ void SectionWorker::Initialize(const TrainerDesc &desc) {
ops_
.
push_back
(
OpRegistry
::
CreateOp
(
*
op_desc
));
}
for
(
auto
&
op
:
ops_
)
{
// cache the op type during the init part
// reduce unnecessary op visit during running
int
op_role
=
op
->
Attr
<
int
>
(
"op_role"
);
if
((
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
))
||
(
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)))
||
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kLRSched
)))
{
// forward ops and lr schedule ops, used for first micro step
forward_and_lr_ops_
.
push_back
(
op
.
get
());
if
((
op_role
!=
static_cast
<
int
>
(
OpRole
::
kLRSched
)))
{
// only forward ops, used for second and later micro steps
forward_ops_
.
push_back
(
op
.
get
());
}
}
else
if
((
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
))
||
(
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kBackward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
))))
{
backward_ops_
.
push_back
(
op
.
get
());
}
else
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
optimizer_ops_
.
push_back
(
op
.
get
());
}
else
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"The op %s is None of LRSched, Forward, Backward or Optimize."
,
op
->
Type
()));
}
}
// if not 1F1B scheduler
if
(
schedule_mode_
!=
1
)
return
;
...
...
@@ -66,25 +93,15 @@ void SectionWorker::RunForward(
int
micro_id
,
std
::
unique_ptr
<
GarbageCollector
>
&
gc
,
std
::
unordered_map
<
const
OperatorBase
*
,
std
::
vector
<
std
::
string
>>
&
unused_vars_
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
// We run op with op_role = kLRSched only for the first microbatch
// to avoid increasing the @LR_DECAY_STEP@ multiple times.
bool
run_first_mbatch
=
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
))
||
(
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)))
||
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kLRSched
));
bool
run_others
=
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
))
||
(
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)));
if
((
micro_id
==
0
&&
run_first_mbatch
)
||
(
micro_id
!=
0
&&
run_others
))
{
VLOG
(
3
)
<<
"Forward: running op "
<<
op
->
Type
()
<<
" for micro-batch "
<<
micro_id
;
op
->
Run
(
*
microbatch_scopes_
[
micro_id
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
micro_id
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
std
::
vector
<
OperatorBase
*>
&
forward_tmp
=
micro_id
==
0
?
forward_and_lr_ops_
:
forward_ops_
;
for
(
auto
&
op
:
forward_tmp
)
{
VLOG
(
3
)
<<
"Forward: running op "
<<
op
->
Type
()
<<
" for micro-batch "
<<
micro_id
;
op
->
Run
(
*
microbatch_scopes_
[
micro_id
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
micro_id
],
op
,
unused_vars_
,
gc
.
get
());
}
}
}
...
...
@@ -93,18 +110,13 @@ void SectionWorker::RunBackward(
int
micro_id
,
std
::
unique_ptr
<
GarbageCollector
>
&
gc
,
std
::
unordered_map
<
const
OperatorBase
*
,
std
::
vector
<
std
::
string
>>
&
unused_vars_
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
((
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
))
||
(
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kBackward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
))))
{
VLOG
(
3
)
<<
"Backward: running op "
<<
op
->
Type
()
<<
" for micro-batch "
<<
micro_id
;
op
->
Run
(
*
microbatch_scopes_
[
micro_id
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
micro_id
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
for
(
auto
&
op
:
backward_ops_
)
{
VLOG
(
3
)
<<
"Backward: running op "
<<
op
->
Type
()
<<
" for micro-batch "
<<
micro_id
;
op
->
Run
(
*
microbatch_scopes_
[
micro_id
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
micro_id
],
op
,
unused_vars_
,
gc
.
get
());
}
}
}
...
...
@@ -113,15 +125,12 @@ void SectionWorker::RunUpdate(
std
::
unique_ptr
<
GarbageCollector
>
&
gc
,
std
::
unordered_map
<
const
OperatorBase
*
,
std
::
vector
<
std
::
string
>>
&
unused_vars_
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
VLOG
(
3
)
<<
"Update: running op "
<<
op
->
Type
();
op
->
Run
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
for
(
auto
&
op
:
optimizer_ops_
)
{
VLOG
(
3
)
<<
"Update: running op "
<<
op
->
Type
();
op
->
Run
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
op
,
unused_vars_
,
gc
.
get
());
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录