einsum.py 35.3 KB
Newer Older
T
Tongxin Bai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import collections
T
Tongxin Bai 已提交
16 17
import itertools
import re
18 19 20 21
import string

import numpy as np
import opt_einsum
T
Tongxin Bai 已提交
22

23
from paddle import _C_ops, _legacy_C_ops
24

25 26
from ..fluid.data_feeder import check_type, check_variable_and_dtype
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode
27 28 29 30 31
from ..fluid.layer_helper import LayerHelper
from .linalg import matmul, transpose
from .manipulation import reshape, squeeze, unsqueeze
from .math import multiply
from .math import sum as paddle_sum
T
Tongxin Bai 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

__all__ = []


def parse_op_labels(labelstr, operand):
    '''
    Parse labels for an input operand.

    Parameters
    ----------
    labelstr:
        the input label string
    operand:
        the input operand

    Returns
    -------
49 50
    the input operand's full label string in which all anonymous dimensions are
    labeled in dots.
T
Tongxin Bai 已提交
51 52 53
    '''
    # Sanity checks
    for c in labelstr.replace('.', ''):
54 55 56
        assert (
            c.isalpha()
        ), f"Invalid equation: {c} is not a valid label, which should be letters."
T
Tongxin Bai 已提交
57

58 59 60
    assert (
        labelstr.replace('...', '', 1).find('.') == -1
    ), "Invalid equation: `.` is found outside of an ellipsis."
T
Tongxin Bai 已提交
61 62 63 64 65 66 67

    # Check shape. Note, in Paddle a tensor rank is always nonzero
    ndims = len(operand.shape)
    assert ndims > 0

    full_labelstr = labelstr.replace('...', '.' * (ndims - len(labelstr) + 3))

68 69 70
    assert (
        len(full_labelstr) == ndims
    ), f"Invalid equation: the label string '{labelstr}' misses dimensions."
T
Tongxin Bai 已提交
71 72 73 74 75 76 77

    return full_labelstr


def parse_labels(labelstr, operands):
    '''
    Parse label strings for all input operands.
78

T
Tongxin Bai 已提交
79 80 81 82 83 84
    Parameters
    ----------
    labelstr:
        The equation's label string
    operands:
        The input operands
85

T
Tongxin Bai 已提交
86 87 88 89 90 91 92 93
    Returns
    -------
    list of full label strings for all input operands
    '''

    nop_labels = labelstr.split(',')
    assert len(nop_labels) == len(operands), (
        f"Invalid equation: the number of operands is {len(operands)}, "
94 95
        f"but found {len(nop_labels)} segments in the label equation."
    )
T
Tongxin Bai 已提交
96 97 98 99 100 101

    return list(map(parse_op_labels, nop_labels, operands))


def validate_rhs(rhs, input_labels, n_bcast_dims):
    '''
102
    Check whether the equation's right hand side is valid
T
Tongxin Bai 已提交
103 104 105
    '''
    # Sanity check.
    if n_bcast_dims > 0:
106 107 108
        assert (
            '...' in rhs
        ), "Invalid equation: missing ellipsis in output labels."
T
Tongxin Bai 已提交
109 110 111 112 113 114 115 116 117 118 119

    rhs = rhs.replace('...', '')
    rhs_set = set(rhs)

    # Hidden assumption: availble labels don't include '.'
    assert '.' not in input_labels

    # Verify that output labels all come from the set of input labels
    non_input_labels = rhs_set.difference(input_labels)
    assert not non_input_labels, (
        f"Invalid equation: "
120 121
        f"output label {sorted(non_input_labels)} not used by any input."
    )
T
Tongxin Bai 已提交
122
    # Verify that output labels are not duplicate
123 124 125
    assert len(rhs) == len(
        rhs_set
    ), "Invalid equation: duplicate output labels are found."
T
Tongxin Bai 已提交
126 127 128 129


def build_view(in_labels, out_labels):
    '''
130 131
    Build an inverse map of dimension indices. Three conditions must hold for
    the result to be meaningful.
T
Tongxin Bai 已提交
132 133 134 135 136 137 138 139 140 141
    First, no duplicate letter labels in each label string.
    Second, the number of dots in dimout_labels >= that in in_labels.
    Third, dots are contiguous in each label string.

    Parameters
    ----------
    in_labels:
        The dimension labels to map to
    out_labels:
        The dimension labels to map from
142

T
Tongxin Bai 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    Returns
    -------
    The inverse map from out_labels to in_labels. The length of the inverse map equals that of
    out_labels. -1 is filled if there's no matching intput dimension for a specific label.

    Examples
    --------
    in_labels = 'ij..', out_labels = '..ji'
    inv_map = [2, 3, 1, 0]
    in_labels = 'ij..', out_labels = '..kji'
    inv_map = [2, 3, -1, 1, 0]
    '''

    inv_map = [-1] * len(out_labels)

    # First build the broadcast dimension mapping
    # Find the broadcast index range in out_labels
    r = re.search(r'\.+', out_labels)
    if r:
        start, end = r.start(), r.end()
        s = re.search(r'\.+', in_labels)
        # fill the broadcast dimension indices from right to left.
        if s:
            for ax, dim in zip(
167 168
                range(start, end)[::-1], range(s.start(), s.end())[::-1]
            ):
T
Tongxin Bai 已提交
169 170
                inv_map[ax] = dim

171
    # Now work on non-broadcast dimensions
T
Tongxin Bai 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    if r:
        it = itertools.chain(range(start), range(end, len(out_labels)))
    else:
        it = iter(range(len(out_labels)))

    for i in it:
        inv_map[i] = in_labels.find(out_labels[i])

    return inv_map


def build_global_view(nop_labels, rhs, n_bcast_dims):
    '''
    Build the global view, which is a layout of all dimension labels
    plus an index table that maps from the layout to the dimensions
    in each operand. In the global view, the dimensions are arranged
    such that output ones are put on the left and contraction ones
189
    are put on the right.
T
Tongxin Bai 已提交
190 191 192 193 194 195 196 197 198

    Parameters
    ----------
    nop_labels:
        The input full label strings of all input operands
    rhs:
        The equation right hand side
    n_bcast_dims:
        The maxium number of broadcast dimensions
199

T
Tongxin Bai 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    Returns
    -------
    A tuple of g_labels, g_view, g_nout, g_count
    g_labels:
        the layout of all labels in a string
    g_view:
        the index table
    g_nout:
        the number of output dimensions
    g_count:
        the counter array for dimension contractions
    '''
    # Put all labels in alphabetical order
    concat = sorted(''.join(nop_labels).replace('.', ''))
    labels, count = [], []
    for a, b in zip(['.'] + concat, concat):
        if a != b:
            labels.append(b)
            count.append(1)
        else:
            count[-1] += 1

222
    if rhs is not None:
T
Tongxin Bai 已提交
223 224 225 226
        validate_rhs(rhs, labels, n_bcast_dims)
        g_labels_out = rhs.replace('...', '.' * n_bcast_dims)
    else:
        g_labels_out = '.' * n_bcast_dims + ''.join(
227 228
            l for l, c in zip(labels, count) if c == 1
        )
T
Tongxin Bai 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

    for i in range(len(count))[::-1]:
        if labels[i] in g_labels_out:
            labels.pop(i)
            count.pop(i)

    g_labels_sum = ''.join(labels)
    g_labels = g_labels_out + g_labels_sum
    g_view = list(map(lambda i: build_view(i, g_labels), nop_labels))
    g_nout = len(g_labels_out)
    g_count = count

    return g_labels, g_view, g_nout, g_count


def build_global_shape(g_view, g_labels, op_shapes):
    '''
246
    The global shape is the shape of all dimensions rearranged and broadcasting
T
Tongxin Bai 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    to the global view. It's a reference data structure for einsum planning.

    Parameters
    ----------
    g_view:
        the global view
    op_shapes:
        the shapes of the all operands

    Returns
    -------
    g_shape:
        the global shape vector
    g_masks:
        list of shape masks for each operand. A dimension's shape mask is a boolean
        indicating whether its size > 1, in other words, it's not squeezable
    '''
    view_shapes = []
    g_masks = []

    for view, op_shape in zip(g_view, op_shapes):
        view_shapes.append([op_shape[dim] if dim > -1 else 1 for dim in view])

    g_shape = [set(sizes_per_ax) - {1} for sizes_per_ax in zip(*view_shapes)]

    non_bcastable = [ax for ax, sizes in enumerate(g_shape) if len(sizes) > 1]

    assert not non_bcastable, (
        f"Invalid operands: label {g_labels[non_bcastable[0]]} "
276 277
        f"corresponds to non-broadcastable dimensions."
    )
T
Tongxin Bai 已提交
278 279 280

    g_shape = [sizes.pop() if len(sizes) > 0 else 1 for sizes in g_shape]

281 282 283
    g_masks = [
        [s > 1 or s == -1 for s in view_shape] for view_shape in view_shapes
    ]
T
Tongxin Bai 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297

    return g_shape, g_masks


def has_duplicated_labels(labels):
    '''
    Returns True if there is any duplicate label.
    '''
    labels = labels.replace('.', '')
    return len(labels) > len(set(labels))


def diagonalize(labels, operand):
    '''
298 299
    Merges dimensions with duplicate labels.

T
Tongxin Bai 已提交
300
    For those dimensions with duplicate labels, merge them into one dimension
301 302
    which represents the diagonal elements. This requires the dimensions with
    duplicate labels are equal sized.
303

T
Tongxin Bai 已提交
304
    Examples
305
    --------
T
Tongxin Bai 已提交
306 307
    'ijj...i' would be merged into 'ij...'
    '''
308 309 310
    assert not has_duplicated_labels(
        labels
    ), 'Duplicate labels are not supported.'
T
Tongxin Bai 已提交
311

312
    return labels, operand
T
Tongxin Bai 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328


def plan_reduce(plan, op, reduce_dims, keepdim):
    '''
    Add reduce to the plan
    '''
    varname = f'op{op}'

    f = lambda var, dims: paddle_sum(var, dims, keepdim=keepdim)
    step = f, [varname], varname, reduce_dims
    plan.add_step(step)


def plan_scalar_prod(plan, op1, op2):
    varnames = [f'op{op1}', f'op{op2}']
    f = lambda var1, var2: paddle_sum(var1) * var2
329
    # f = lambda var1, var2: var1 * var2
T
Tongxin Bai 已提交
330 331 332 333
    step = f, varnames, varnames[1]
    plan.add_step(step)


334
def plan_matmul(plan, g_view, op1, op2, g_supports, g_shape, I, J1, J2, K):
T
Tongxin Bai 已提交
335 336 337 338 339 340 341 342 343
    '''
    plan matmul
    '''
    # Transpose and re-shape op1 and op2 in I, J1, K and I, J2, K
    # Then apply matmul(x, y, transpose_x=False, tranpose_y=True)
    var1, var2 = f'op{op1}', f'op{op2}'

    op1_view, op2_view = [g_view[op] for op in (op1, op2)]

344 345 346 347
    I1 = [idx for idx in I if op1_view[idx] >= 0]
    I2 = [idx for idx in I if op2_view[idx] >= 0]
    op1_view = np.array(op1_view)
    op1_dims = op1_view[I1 + J1 + K]
T
Tongxin Bai 已提交
348

349 350
    op2_view = np.array(op2_view)
    op2_dims = op2_view[I2 + J2 + K]
T
Tongxin Bai 已提交
351

352 353 354 355
    op1_mask, op2_mask = [g_supports[op] for op in (op1, op2)]
    op1_vshape = np.array([s if m else 1 for s, m in zip(g_shape, op1_mask)])
    op2_vshape = np.array([s if m else 1 for s, m in zip(g_shape, op2_mask)])
    vshape = np.maximum(op1_vshape, op2_vshape)
T
Tongxin Bai 已提交
356

357
    i1, i2, j1, j2, k = map(len, (I1, I2, J1, J2, K))
T
Tongxin Bai 已提交
358

359
    if any(op1_dims != np.arange(len(op1_dims))):
T
Tongxin Bai 已提交
360
        # print(f'perm1: {perm1}')
361
        step = transpose, [var1], var1, list(op1_dims)
T
Tongxin Bai 已提交
362 363
        plan.add_step(step)

364
    if any(op2_dims != np.arange(len(op2_dims))):
T
Tongxin Bai 已提交
365
        # print(f'perm2: {perm2}')
366
        step = transpose, [var2], var2, list(op2_dims)
T
Tongxin Bai 已提交
367 368
        plan.add_step(step)

369
    # Check if conditions hold for turnning the operation into a matmul
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    if (
        j1 + j2 > 0
        and k > 0
        and -1 not in np.concatenate((op1_vshape, op2_vshape))
    ):
        op1_shape = (
            list(op1_vshape[I])
            + [np.prod(op1_vshape[J1])]
            + [np.prod(op1_vshape[K])]
        )
        op2_shape = (
            list(op2_vshape[I])
            + [np.prod(op2_vshape[J2])]
            + [np.prod(op2_vshape[K])]
        )
T
Tongxin Bai 已提交
385

386 387
        # Merge J dims and K dims by reshaping
        step = reshape, [var1], var1, op1_shape
T
Tongxin Bai 已提交
388
        plan.add_step(step)
389
        step = reshape, [var2], var2, op2_shape
T
Tongxin Bai 已提交
390 391 392 393 394 395
        plan.add_step(step)

        # Matmul
        step = matmul, [var1, var2], var2, False, True
        plan.add_step(step)

396 397 398
        # Reshape back
        shape = list(vshape[I + J1 + J2])
        step = reshape, [var2], var2, shape
T
Tongxin Bai 已提交
399 400
        plan.add_step(step)

401 402 403 404 405
    elif j1 == j2 == k == 1:
        # Can still do matmul even unknown shapes are present
        step = matmul, [var1, var2], var2, False, True
        plan.add_step(step)

406
    # In the rest cases we opt for ops other than matmul
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    else:
        # unsqueeze operands include J1...J2... dimensions
        if j2:
            fill = list(range(i1 + j1, i1 + j1 + j2))
            step = unsqueeze, [var1], var1, fill
            plan.add_step(step)
        if j1:
            fill = list(range(i2, i2 + j1))
            step = unsqueeze, [var2], var2, fill
            plan.add_step(step)
        # In case of no dimensions to contract, do an elementwise multiply
        if k == 0:
            # make broadcast
            step = multiply, [var1, var2], var2
            plan.add_step(step)
        # Contract and no join, turn into a dot
        elif j1 + j2 == 0 and k == 1:
            step = unsqueeze, [var1], var1, [-2]
            plan.add_step(step)
            step = unsqueeze, [var2], var2, [-1]
            plan.add_step(step)
            step = matmul, [var1, var2], var2
            plan.add_step(step)
            step = squeeze, [var2], var2, [-1, -2]
            plan.add_step(step)
432
        elif j1 + j2 == 0 and -1 not in np.concatenate(
433 434
            (op1_vshape[K], op2_vshape[K])
        ):
435
            assert all(op1_vshape[K] == op2_vshape[K])
436 437 438 439 440 441
            step = (
                reshape,
                [var1],
                var1,
                list(op1_vshape[I]) + [1] + [np.prod(op1_vshape[K])],
            )
442
            plan.add_step(step)
443 444 445 446 447 448
            step = (
                reshape,
                [var2],
                var2,
                list(op2_vshape[I]) + [1] + [np.prod(op2_vshape[K])],
            )
449 450 451 452 453 454 455 456 457 458 459
            plan.add_step(step)
            step = matmul, [var1, var2], var2, False, True
            plan.add_step(step)
            step = squeeze, [var2], var2, [-1, -2]
            plan.add_step(step)
        else:
            step = multiply, [var1, var2], var2
            plan.add_step(step)
            reduce_dims = list(range(-k, 0))
            plan_reduce(plan, op2, reduce_dims, keepdim=False)

T
Tongxin Bai 已提交
460 461
    # Wrap up, updating auxiliary data
    # Updating g_mask for I and J axes
462 463
    for ax in I + J1 + J2:
        op2_mask[ax] = vshape[ax] > 1 or vshape[ax] == -1
T
Tongxin Bai 已提交
464 465 466 467 468 469 470 471 472 473

    for ax in K:
        op2_mask[ax] = False

    for ax in range(len(op2_view)):
        op2_view[ax] = -1
    dim = 0
    for ax in I + J1 + J2:
        op2_view[ax], dim = dim, dim + 1

474 475
    g_view[op2] = list(op2_view)

T
Tongxin Bai 已提交
476

477 478 479
def plan_summation(
    plan, g_view, op1, op2, g_supports, g_shape, g_count, n_bcast
):
T
Tongxin Bai 已提交
480 481 482 483
    '''
    Plan various kinds of summation
    '''
    op1_view, op2_view = g_view[op1], g_view[op2]
484
    op1_mask, op2_mask = g_supports[op1], g_supports[op2]
T
Tongxin Bai 已提交
485 486 487 488 489 490 491 492

    ndim = len(op1_view)
    nout = ndim - len(g_count)

    count = [0] * nout + g_count

    I, K, J1, J2 = list(range(n_bcast)), [], [], []

493 494 495
    for ax, dim1, dim2 in zip(
        range(n_bcast, ndim), op1_view[n_bcast:], op2_view[n_bcast:]
    ):
T
Tongxin Bai 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

        if (dim1 != -1) != (dim2 != -1):
            if dim1 != -1:
                J1.append(ax)
            else:
                J2.append(ax)
        elif dim1 != -1:
            fold = int(op1_mask[ax]) + int(op2_mask[ax])
            if ax >= nout and fold == count[ax]:
                # Ready to fold the dimensions
                K.append(ax)
                count[ax] -= fold
            else:
                I.append(ax)
                count[ax] -= max(fold - 1, 0)

    # Update g_count
    g_count[:] = count[nout:]

    # Now it's OK to merge the K dims as the same shape holds
    # print(f'I: {I}   J1: {J1}    J2: {J2}   K: {K}')
517
    plan_matmul(plan, g_view, op1, op2, g_supports, g_shape, I, J1, J2, K)
T
Tongxin Bai 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588


def rearrange(axes):
    perm, fill = [], []
    for ax, dim in enumerate(axes):
        if dim < 0:
            fill.append(ax)
        else:
            perm.append(dim)
    # Trivial permutation returns []
    if all(i == dim for i, dim in enumerate(perm)):
        perm = []

    return perm, fill


def plan_broadcast(plan, operands, nop_axes):
    '''
    Plan broadcast across
    '''
    nop = len(operands)
    varnames = [f'op{i}' for i in range(nop)]

    for i, op_axes in zip(range(nop), nop_axes):
        # Re-arrange the dimesions according to the global layout
        perm, fill = rearrange(op_axes)
        var = varnames[i]
        if perm:
            step = transpose, [var], var, perm
            plan.add_step(step)
        if fill:
            step = unsqueeze, [var], var, fill
            plan.add_step(step)

    def f(*args):
        expr = ' * '.join(varnames)
        return eval(expr, dict(zip(varnames, args)))

    step = f, varnames, None
    plan.add_step(step)


class Plan:
    def __init__(self):
        self.env = {}
        self.steps = []

    def add_step(self, step):
        self.steps.append(step)

    def get_var(self, varname):
        return self.env[varname] if varname in self.env else None

    def set_var(self, varname, var):
        self.env[varname] = var

    def show(self):
        res = None
        for f, in_varnames, out_varname, *args in self.steps:
            print(repr((out_varname, f, *in_varnames, *args)))
        return res

    def execute(self):
        res = None
        for f, in_varnames, out_varname, *args in self.steps:
            res = f(*map(self.get_var, in_varnames), *args)
            if out_varname:
                self.set_var(out_varname, res)
        return res


589
def plan_einsum(operands, g_view, g_shape, g_supports, g_count, n_bcast):
T
Tongxin Bai 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
    '''
    Plans the actual execution steps.
    Results
    -------
    the execution plan
    '''
    nop = len(operands)
    ndim = len(g_view[0])
    nout = ndim - len(g_count)

    # Initialize a plan with an environment
    plan = Plan()
    op_names = [f'op{i}' for i in range(nop)]
    list(map(plan.set_var, op_names, operands))

    # In case no dimensions to combine, do broadcast straight across
    if not g_count:
        plan_broadcast(plan, operands, g_view)
        return plan

610 611 612
    # Down count degenerate contraction dimensions.
    for view, support in zip(g_view, g_supports):
        # To collect the down count number, we use a type casting trick
T
Tongxin Bai 已提交
613
        down_count = [
614 615
            int((d + 1) and (not s))
            for d, s in zip(view[nout:], support[nout:])
T
Tongxin Bai 已提交
616
        ]
617 618
        for i, count in enumerate(down_count):
            g_count[i] -= count
T
Tongxin Bai 已提交
619

620 621
    # Reduce any dimension for which g_support is set and g_count == 1
    for i, view, mask in zip(range(nop), g_view, g_supports):
T
Tongxin Bai 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
        to_reduce = []
        for dim, masked, count in zip(view[nout:], mask[nout:], g_count):
            to_reduce.append(dim if (masked and count == 1) else -1)

        reduce_dims = list(filter(lambda x: x > -1, to_reduce))
        if reduce_dims:
            plan_reduce(plan, i, reduce_dims, keepdim=True)

        # Unset mask and decrease g_count for the reduced dimensions
        for i, d in enumerate(to_reduce):
            ax = i + nout
            mask[ax] = mask[ax] and (d == -1)
            g_count[i] -= 0 if d == -1 else 1

    # Plan the summations over the operand sequence
    for i in range(nop):
        # plan a single step

        if i == 0:
            continue

        # We'd like to arrange the dimensions in the following way:
        # [I...  J... K...]
        # [I...  J... K...]
646 647
        # where
        #       I... are aligned and not to be combined immediately
T
Tongxin Bai 已提交
648 649 650 651 652 653 654 655 656 657 658 659
        #       J... are not aligned and not to be combined immediately
        #       K... are aligned and should be immediately combined
        # At this point the non-trivial broadcast dimensinos in K are already reduced
        # and removed. That means all K dimensions are aligned and their sizes are not 1.
        # We then inspect the layout of I,J,K plus the above observation to make
        # specializatoin decisions.  The current strategy is set as follows:
        #  (1) if I... J... K... are all empty, it's multiplying a scalar
        #  (2) if K... are empty, better use a broadcast
        #  (3) if I... J... empty and K... not empty, a vector-vector multiply (or a dot)
        #  (4) Elsewise, either I... or J... not empty, and K... not empty, use a general matmul

        # Resolve the summation kind: dot, matmul or *
660 661
        if not any(g_supports[i - 1]):
            # op1 is a one element tensor.
T
Tongxin Bai 已提交
662 663
            plan_scalar_prod(plan, i - 1, i)
        else:
664 665 666
            plan_summation(
                plan, g_view, i - 1, i, g_supports, g_shape, g_count, n_bcast
            )
T
Tongxin Bai 已提交
667 668 669

    # for ax, dim in enumerate(g_view[nop-1][:nout]):
    #     assert dim == ax
670
    assert all(not masked for masked in g_supports[nop - 1][nout:])
T
Tongxin Bai 已提交
671 672 673 674

    view = g_view[-1]
    if any(ax != dim for ax, dim in enumerate(view[:nout])):
        perm = [dim for dim in view if dim >= 0]
675 676 677 678
        if sorted(perm) != perm:
            varname = f'op{nop-1}'
            step = transpose, [varname], varname, perm
            plan.add_step(step)
T
Tongxin Bai 已提交
679
        dim = 0
680
        unsqueeze_dims = []
T
Tongxin Bai 已提交
681 682 683
        for ax, d in enumerate(view):
            if d != -1:
                view[ax], dim = dim, dim + 1
684 685 686 687 688 689 690
        for ax, d in enumerate(view[:nout]):
            if d == -1:
                unsqueeze_dims.append(ax)
        if unsqueeze_dims:
            varname = f'op{nop-1}'
            step = unsqueeze, [varname], varname, unsqueeze_dims
            plan.add_step(step)
T
Tongxin Bai 已提交
691 692 693 694 695 696 697 698 699 700 701

    squeeze_dims = [dim for dim in view[nout:] if dim != -1]
    if squeeze_dims:
        # plan_reduce(plan, nop-1, reduce_dims, keepdim=False)
        varname = f'op{nop-1}'
        step = squeeze, [varname], varname, squeeze_dims
        plan.add_step(step)

    return plan


702 703 704 705 706 707
def preprocess(equation, *operands):
    """
    check equation / raise error, default right labels generation
    """
    equation = equation.replace(" ", "")
    nop = len(operands)
708 709 710
    assert nop > 0, (
        "Required at least one operand in Einsum API, but received %s " % nop
    )
711 712 713 714 715 716 717 718 719 720 721 722 723

    # Part the equation to left hand side and right hand side
    lhs, *rhs = equation.lower().split('->')
    assert len(rhs) < 2, "Invalid equation: multiple `->` were found."

    labels = parse_labels(lhs, operands)
    # Note, we distinguish between 'ij->' and 'ij' by setting rhs to '' and None
    rhs = rhs[0] if rhs else None
    if rhs is None:
        rhs = rhs_inference(lhs)

    assert len(lhs.split(',')) == len(operands), (
        f"Invalid equation: the number of operands is {len(operands)}, "
724 725
        f"but found {len(lhs.split(','))} segments in the label equation."
    )
726

727 728 729
    assert not (
        '...' in lhs and '...' not in rhs
    ), 'Invalid equation: missing ellipsis in output labels.'
730 731 732 733 734

    return lhs, rhs, labels


def parse_fake_shape(equation, operands, labels):
735
    """
736

737
    this shape is just used for operands planning. may differ with the original shape.
738
    for example:
739 740 741 742 743
    ... is replaced by 1
    -1  is replaced by 1
    Results
    -------
    list of shape
744

745 746 747 748
    """
    shaped = collections.namedtuple('shaped', ['shape'])

    def fake_shape(label, op):
749 750 751 752
        assert len(op.shape) == len(label), (
            "length of shape and length of label must be the same, but received %d != %d"
            % (len(op.shape), len(label))
        )
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
        fakes = [s for i, (l, s) in enumerate(zip(label, op.shape)) if l != '.']
        fakes = list(map(abs, fakes))  # make -1 -> 1
        if '.' in label:
            fakes.insert(label.index('.'), 1)
        return shaped(fakes)

    out = list(map(fake_shape, labels, operands))
    return out


def rhs_inference(lhs):
    def is_free(key):
        return cnt.get(key) == 1 and key not in ['.', ',']

    cnt = collections.Counter(lhs)
    rhs = "..." if '...' in lhs else ""
    rhs = rhs + "".join(filter(is_free, sorted(cnt.elements())))
    return rhs


def gen_equation_for_opteinsum(lhs, rhs):
774
    """
775 776 777 778 779 780 781
    1. gen rhs if rhs is None
    2. '...' -> 'A'
    """

    def get_used_label(counter):
        used = set(counter.elements())
        for c in string.ascii_lowercase:
782 783
            if c not in used:
                return c
784 785 786 787 788 789 790 791 792 793 794 795 796
        raise ValueError(
            "You have used all `a` - `z`, there can't find a unused for einsum optimization"
        )

    cnt = collections.Counter(lhs)
    broadcast_label = get_used_label(cnt)
    if rhs is None:
        rhs = rhs_inference(lhs)
    lhs = lhs.replace("...", broadcast_label)
    rhs = rhs.replace("...", broadcast_label)
    return lhs + "->" + rhs, broadcast_label


797
def einsum_v2(equation, *operands):
798
    """
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
    einsum v2 implementation.
    1. Implement C++ EinsumOp.
    2. V2 create the EinsumOp to calculate, so just a little verifty work in python.
    3. V2 use opt_einsum.contract_path to optimize the multivariable einsum.
    """
    n_op = len(operands)
    lhs, rhs, labels = preprocess(equation, *operands)

    if n_op <= 2:
        return gen_einsum_op(lhs + '->' + rhs, *operands)

    shapes = parse_fake_shape(lhs, operands, labels)
    opt_equation, broadcast_label = gen_equation_for_opteinsum(lhs, rhs)
    _, cons = opt_einsum.contract_path(opt_equation, *shapes, einsum_call=True)
    var_list = list(operands)
    for path in cons:
        (a, b), _, eq, *__ = path
816 817 818
        assert (
            a > b
        ), "Assume the first var_idx is smaller than the second_idx. opt_einsum can guarantee it."
819 820 821
        var_s = [var_list.pop(a), var_list.pop(b)]
        eq = eq.replace(broadcast_label, "...")
        var_list.append(gen_einsum_op(eq, *var_s))
822 823 824
    assert (
        len(var_list) == 1
    ), "There must be one elements in list, but received %d." % len(var_list)
825 826 827 828
    return var_list[0]


def gen_einsum_op(equation, *operands):
829 830
    """
    EinsumOp Python Interface:
831 832 833
    """
    assert len(operands) <= 2, "Only support two operands in EinsumOp."
    if in_dygraph_mode():
834
        return _C_ops.einsum(operands, equation)[0]
835

836 837
    if _in_legacy_dygraph():
        # dygraph
838 839 840
        return _legacy_C_ops.einsum(
            operands, len(operands), len(operands), 'equation', equation
        )[0]
841

842 843 844 845 846 847 848
    for inp in operands:
        check_variable_and_dtype(inp, 'dtype', ['float32', 'float64'], 'einsum')
    check_type(equation, 'equation', str, 'einsum')
    helper = LayerHelper('einsum', **locals())
    out = helper.create_variable_for_type_inference(dtype=operands[0].dtype)
    attrs = dict()
    attrs['equation'] = equation
849 850 851 852
    caches = [
        helper.create_variable_for_type_inference(dtype=operands[0].dtype)
        for i in range(len(operands))
    ]
853 854 855 856
    xshape = [
        helper.create_variable_for_type_inference(dtype=operands[0].dtype)
        for i in range(len(operands))
    ]
857 858 859 860 861 862
    helper.append_op(
        type='einsum',
        inputs={'Operands': operands},
        outputs={'Out': out, "InnerCache": caches, "XShape": xshape},
        attrs=attrs,
    )
863 864 865
    return out


T
Tongxin Bai 已提交
866 867
def einsum(equation, *operands):
    r"""
868

T
Tongxin Bai 已提交
869 870
    einsum(equation, *operands)

Z
Zman 已提交
871
    The current version of this API should be used in dynamic graph only mode.
T
Tongxin Bai 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892

    Einsum offers a tensor operation API which allows using the Einstein summation
    convention or Einstain notation. It takes as input one or multiple tensors and
    produces as output one tensor.

    Einsum is able to perform a variety of tensor operations. Following lists a few:

        - for single operand
            - trace
            - diagonal
            - transpose
            - sum
        - for double operands
            - dot
            - outer
            - broadcasting and elementwise multiply
            - matrix multiply
            - batched matrix multiply
        - for many operads
            - broadcasting multiply
            - chained matrix multiply
893

T
Tongxin Bai 已提交
894 895 896
    **The summation notation**

        - The tensor dimensions are labeled using uncased English letters. E.g., `ijk`
897
          relates to a three dimensional tensor whose dimensions are labeled i, j, and k.
T
Tongxin Bai 已提交
898
        - The equation is `,` separated into terms, each being a distinct input's
899
          dimension label string.
T
Tongxin Bai 已提交
900
        - Ellipsis `...` enables broadcasting by automatically converting the unlabeled
901
          dimensions into broadcasting dimensions.
T
Tongxin Bai 已提交
902
        - Singular labels are called free labels, duplicate are dummy labels. Dummy labeled
903
          dimensions will be reduced and removed in the output.
Z
Zman 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
        - Output labels can be explicitly specified on the right hand side of `->` or omitted.
            In the latter case, the output labels will be inferred from the input labels.
                - Inference of output labels
                    - Broadcasting label `...`, if present, is put on the leftmost position.
                    - Free labels are reordered alphabetically and put after `...`.
                - On explicit output labels
                    - If broadcasting is enabled, then `...` must be present.
                    - The output labels can be an empty, an indication to output as a scalar
                        the sum over the original output.
                    - Non-input labels are invalid.
                    - Duplicate labels are invalid.
                    - For any dummy label which is present for the output, it's promoted to
                        a free label.
                    - For any free label which is not present for the output, it's lowered to
                        a dummy label.
919

T
Tongxin Bai 已提交
920
        - Examples
Z
zhiboniu 已提交
921
            - '...ij, ...jk', where i and k are free labels, j is dummy. The output label
922
              string is '...ik'
923
            - 'ij -> i', where i is a free label and j is a dummy label.
Z
zhiboniu 已提交
924
            - '...ij, ...jk -> ...ijk', where i, j and k are all free labels.
T
Tongxin Bai 已提交
925
            - '...ij, ...jk -> ij', an invalid equation since `...` is not present for
926
              the output.
T
Tongxin Bai 已提交
927 928 929 930 931 932 933

    **The summation rule**

    The summation procedure can be outlined as follows, although the actual steps taken
    may vary significantly due to implementation specific optimization.

        - Step 1: preparation for broadcasting, that is, transposing and unsqueezing
934 935
          the input operands to have each resulting dimension identically labeled across
          all the input operands.
T
Tongxin Bai 已提交
936 937 938 939 940 941
        - Step 2: broadcasting multiply all the resulting operands from step 1.
        - Step 3: reducing dummy labeled dimensions.
        - Step 4: transposing the result tensor to match the output labels.

    **On trace and diagonal**

942
    The trace and diagonal are planned yet unimplemented features.
T
Tongxin Bai 已提交
943 944 945 946 947 948 949

    Args:
        equation (`str`):
            The summation terms using the Einstein summation notation.
        operands (`list|Tensor`):
            The input tensors over which to compute the Einstein summation. The number of
            operands should equal the number of input terms in the equation.
950

T
Tongxin Bai 已提交
951
    Returns:
952
        result (`Tensor`), the result tensor.
953

T
Tongxin Bai 已提交
954 955 956
    Examples:
        .. code-block:: python

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
            import paddle
            paddle.seed(102)
            x = paddle.rand([4])
            y = paddle.rand([5])

            # sum
            print(paddle.einsum('i->', x))
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #   1.95791852)

            # dot
            print(paddle.einsum('i,i->', x, x))
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #   [1.45936954])

            # outer
            print(paddle.einsum("i,j->ij", x, y))
            # Tensor(shape=[4, 5], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #   [[0.00079869, 0.00120950, 0.00136844, 0.00187187, 0.00192194],
            #    [0.23455200, 0.35519385, 0.40186870, 0.54970956, 0.56441545],
            #    [0.11773264, 0.17828843, 0.20171674, 0.27592498, 0.28330654],
            #    [0.32897076, 0.49817693, 0.56364071, 0.77099484, 0.79162055]])

            A = paddle.rand([2, 3, 2])
            B = paddle.rand([2, 2, 3])

            # transpose
            print(paddle.einsum('ijk->kji', A))
            #  Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #   [[[0.95649719, 0.49684682],
            #     [0.80071914, 0.46258664],
            #     [0.49814570, 0.33383518]],
            #
            #    [[0.07637714, 0.29374704],
            #     [0.51470858, 0.51907635],
            #     [0.99066722, 0.55802226]]])

            # batch matrix multiplication
            print(paddle.einsum('ijk, ikl->ijl', A,B))
            # Tensor(shape=[2, 3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #   [[[0.32172769, 0.50617385, 0.41394392],
            #     [0.51736701, 0.49921003, 0.38730967],
            #     [0.69078457, 0.42282537, 0.30161136]],
            #
            #    [[0.32043904, 0.18164253, 0.27810261],
            #     [0.50226176, 0.24512935, 0.39881429],
            #     [0.51476848, 0.23367381, 0.39229113]]])

            # Ellipsis transpose
            print(paddle.einsum('...jk->...kj', A))
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #   [[[0.95649719, 0.80071914, 0.49814570],
            #     [0.07637714, 0.51470858, 0.99066722]],
            #
            #    [[0.49684682, 0.46258664, 0.33383518],
            #     [0.29374704, 0.51907635, 0.55802226]]])

            # Ellipsis batch matrix multiplication
            print(paddle.einsum('...jk, ...kl->...jl', A,B))
            # Tensor(shape=[2, 3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #   [[[0.32172769, 0.50617385, 0.41394392],
            #     [0.51736701, 0.49921003, 0.38730967],
            #     [0.69078457, 0.42282537, 0.30161136]],
            #
            #    [[0.32043904, 0.18164253, 0.27810261],
            #     [0.50226176, 0.24512935, 0.39881429],
            #     [0.51476848, 0.23367381, 0.39229113]]])

T
Tongxin Bai 已提交
1025
    """
1026
    import os
1027

1028
    if int(os.environ.get('FLAGS_new_einsum', "1")):
1029
        return einsum_v2(equation, *operands)
T
Tongxin Bai 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

    nop = len(operands)
    assert nop > 0, "At least one operand is expected."

    # Part the equation to left hand side and right hand side
    lhs, *rhs = equation.lower().replace(' ', '').split('->')
    assert len(rhs) < 2, "Invalid equation: multiple `->` were found."

    # Note, we distinguish between 'ij->' and 'ij' by setting rhs to '' and None
    rhs = rhs[0] if rhs else None

    # Parse labels for each operand and count the number of occurrences for each alphabet label
    nop_labels = parse_labels(lhs, operands)

    # Diagonalize the operands which have duplicate labels
    nop_labels, operands = list(zip(*map(diagonalize, nop_labels, operands)))

    # To handle broadcasting, we should first know how many dimensions are there
    # We need to use that number to generate output labels
    # e.g. 1 for ['ij', 'i.', '.k']
    n_bcast_dims = max(map(lambda s: s.count('.'), nop_labels))

    # Build the data structures for planning. It's helpful to think of all the operands
1053
    # broadcasting together from a global view. In this view, dimensions from multiple
T
Tongxin Bai 已提交
1054 1055
    # operands are mapped to the same position if they are labeled uniquely. Broadcasting
    # dimensions are mapped to adjacent positions with the right bound fixed. Subject to
1056
    # each operand, the map is injective but for all operands the map is on-to.
T
Tongxin Bai 已提交
1057
    # g_labels:
1058
    #   The labels of the global view
T
Tongxin Bai 已提交
1059 1060 1061 1062 1063 1064 1065 1066
    # g_view:
    #   Includes a list of maps from each operand's dimensions to the global view's dimensions
    #   which we refer to as ax or axes in the code to distinguish from operand's dims
    # g_shape:
    #   The shape of the global view. The size of each dimension is what the aligned dimensions
    #   should broadcast to
    # g_nout:
    #   Number of output axes
1067 1068
    # g_supports
    #   Booleans indicating each operand's non-trivial dimensions
T
Tongxin Bai 已提交
1069 1070 1071
    # g_count
    #   Counting how many non-trivial dimensions remain for each ax

1072
    g_labels, g_view, g_nout, g_count = build_global_view(
1073 1074 1075 1076 1077
        nop_labels, rhs, n_bcast_dims
    )
    g_shape, g_supports = build_global_shape(
        g_view, g_labels, [op.shape for op in operands]
    )
T
Tongxin Bai 已提交
1078 1079

    # Now we're ready to build up an execution plan
1080
    args = operands, g_view, g_shape, g_supports, g_count, n_bcast_dims
T
Tongxin Bai 已提交
1081 1082 1083 1084
    plan = plan_einsum(*args)
    result = plan.execute()

    return result