einsum.py 35.2 KB
Newer Older
T
Tongxin Bai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
16
import numpy as np
T
Tongxin Bai 已提交
17 18
import re

19
from .linalg import matmul, transpose
Z
zhiboniu 已提交
20
from .manipulation import squeeze, unsqueeze, reshape
T
Tongxin Bai 已提交
21 22
from .math import multiply
from .math import sum as paddle_sum
23
from ..fluid.framework import _in_legacy_dygraph
24
from paddle import _C_ops, _legacy_C_ops
25
from ..fluid.data_feeder import check_type, check_variable_and_dtype
26
from ..fluid.layer_helper import LayerHelper
27
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode
28 29 30
import collections
import string
import opt_einsum
T
Tongxin Bai 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

__all__ = []


def parse_op_labels(labelstr, operand):
    '''
    Parse labels for an input operand.

    Parameters
    ----------
    labelstr:
        the input label string
    operand:
        the input operand

    Returns
    -------
48 49
    the input operand's full label string in which all anonymous dimensions are
    labeled in dots.
T
Tongxin Bai 已提交
50 51 52 53 54 55 56 57
    '''
    # Sanity checks
    for c in labelstr.replace('.', ''):
        assert c.isalpha(), (
            f"Invalid equation: {c} is not a valid label, which should be letters."
        )

    assert labelstr.replace('...', '', 1).find('.') == -1, (
58
        "Invalid equation: `.` is found outside of an ellipsis.")
T
Tongxin Bai 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

    # Check shape. Note, in Paddle a tensor rank is always nonzero
    ndims = len(operand.shape)
    assert ndims > 0

    full_labelstr = labelstr.replace('...', '.' * (ndims - len(labelstr) + 3))

    assert len(full_labelstr) == ndims, (
        f"Invalid equation: the label string '{labelstr}' misses dimensions.")

    return full_labelstr


def parse_labels(labelstr, operands):
    '''
    Parse label strings for all input operands.
75

T
Tongxin Bai 已提交
76 77 78 79 80 81
    Parameters
    ----------
    labelstr:
        The equation's label string
    operands:
        The input operands
82

T
Tongxin Bai 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    Returns
    -------
    list of full label strings for all input operands
    '''

    nop_labels = labelstr.split(',')
    assert len(nop_labels) == len(operands), (
        f"Invalid equation: the number of operands is {len(operands)}, "
        f"but found {len(nop_labels)} segments in the label equation.")

    return list(map(parse_op_labels, nop_labels, operands))


def validate_rhs(rhs, input_labels, n_bcast_dims):
    '''
98
    Check whether the equation's right hand side is valid
T
Tongxin Bai 已提交
99 100 101 102
    '''
    # Sanity check.
    if n_bcast_dims > 0:
        assert '...' in rhs, (
103
            "Invalid equation: missing ellipsis in output labels.")
T
Tongxin Bai 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117

    rhs = rhs.replace('...', '')
    rhs_set = set(rhs)

    # Hidden assumption: availble labels don't include '.'
    assert '.' not in input_labels

    # Verify that output labels all come from the set of input labels
    non_input_labels = rhs_set.difference(input_labels)
    assert not non_input_labels, (
        f"Invalid equation: "
        f"output label {sorted(non_input_labels)} not used by any input.")
    # Verify that output labels are not duplicate
    assert len(rhs) == len(rhs_set), (
118
        "Invalid equation: duplicate output labels are found.")
T
Tongxin Bai 已提交
119 120 121 122


def build_view(in_labels, out_labels):
    '''
123 124
    Build an inverse map of dimension indices. Three conditions must hold for
    the result to be meaningful.
T
Tongxin Bai 已提交
125 126 127 128 129 130 131 132 133 134
    First, no duplicate letter labels in each label string.
    Second, the number of dots in dimout_labels >= that in in_labels.
    Third, dots are contiguous in each label string.

    Parameters
    ----------
    in_labels:
        The dimension labels to map to
    out_labels:
        The dimension labels to map from
135

T
Tongxin Bai 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    Returns
    -------
    The inverse map from out_labels to in_labels. The length of the inverse map equals that of
    out_labels. -1 is filled if there's no matching intput dimension for a specific label.

    Examples
    --------
    in_labels = 'ij..', out_labels = '..ji'
    inv_map = [2, 3, 1, 0]
    in_labels = 'ij..', out_labels = '..kji'
    inv_map = [2, 3, -1, 1, 0]
    '''

    inv_map = [-1] * len(out_labels)

    # First build the broadcast dimension mapping
    # Find the broadcast index range in out_labels
    r = re.search(r'\.+', out_labels)
    if r:
        start, end = r.start(), r.end()
        s = re.search(r'\.+', in_labels)
        # fill the broadcast dimension indices from right to left.
        if s:
            for ax, dim in zip(
160 161
                    range(start, end)[::-1],
                    range(s.start(), s.end())[::-1]):
T
Tongxin Bai 已提交
162 163
                inv_map[ax] = dim

164
    # Now work on non-broadcast dimensions
T
Tongxin Bai 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    if r:
        it = itertools.chain(range(start), range(end, len(out_labels)))
    else:
        it = iter(range(len(out_labels)))

    for i in it:
        inv_map[i] = in_labels.find(out_labels[i])

    return inv_map


def build_global_view(nop_labels, rhs, n_bcast_dims):
    '''
    Build the global view, which is a layout of all dimension labels
    plus an index table that maps from the layout to the dimensions
    in each operand. In the global view, the dimensions are arranged
    such that output ones are put on the left and contraction ones
182
    are put on the right.
T
Tongxin Bai 已提交
183 184 185 186 187 188 189 190 191

    Parameters
    ----------
    nop_labels:
        The input full label strings of all input operands
    rhs:
        The equation right hand side
    n_bcast_dims:
        The maxium number of broadcast dimensions
192

T
Tongxin Bai 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    Returns
    -------
    A tuple of g_labels, g_view, g_nout, g_count
    g_labels:
        the layout of all labels in a string
    g_view:
        the index table
    g_nout:
        the number of output dimensions
    g_count:
        the counter array for dimension contractions
    '''
    # Put all labels in alphabetical order
    concat = sorted(''.join(nop_labels).replace('.', ''))
    labels, count = [], []
    for a, b in zip(['.'] + concat, concat):
        if a != b:
            labels.append(b)
            count.append(1)
        else:
            count[-1] += 1

    if rhs != None:
        validate_rhs(rhs, labels, n_bcast_dims)
        g_labels_out = rhs.replace('...', '.' * n_bcast_dims)
    else:
        g_labels_out = '.' * n_bcast_dims + ''.join(
            l for l, c in zip(labels, count) if c == 1)

    for i in range(len(count))[::-1]:
        if labels[i] in g_labels_out:
            labels.pop(i)
            count.pop(i)

    g_labels_sum = ''.join(labels)
    g_labels = g_labels_out + g_labels_sum
    g_view = list(map(lambda i: build_view(i, g_labels), nop_labels))
    g_nout = len(g_labels_out)
    g_count = count

    return g_labels, g_view, g_nout, g_count


def build_global_shape(g_view, g_labels, op_shapes):
    '''
238
    The global shape is the shape of all dimensions rearranged and broadcasting
T
Tongxin Bai 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    to the global view. It's a reference data structure for einsum planning.

    Parameters
    ----------
    g_view:
        the global view
    op_shapes:
        the shapes of the all operands

    Returns
    -------
    g_shape:
        the global shape vector
    g_masks:
        list of shape masks for each operand. A dimension's shape mask is a boolean
        indicating whether its size > 1, in other words, it's not squeezable
    '''
    view_shapes = []
    g_masks = []

    for view, op_shape in zip(g_view, op_shapes):
        view_shapes.append([op_shape[dim] if dim > -1 else 1 for dim in view])

    g_shape = [set(sizes_per_ax) - {1} for sizes_per_ax in zip(*view_shapes)]

    non_bcastable = [ax for ax, sizes in enumerate(g_shape) if len(sizes) > 1]

    assert not non_bcastable, (
        f"Invalid operands: label {g_labels[non_bcastable[0]]} "
        f"corresponds to non-broadcastable dimensions.")

    g_shape = [sizes.pop() if len(sizes) > 0 else 1 for sizes in g_shape]

272 273
    g_masks = [[s > 1 or s == -1 for s in view_shape]
               for view_shape in view_shapes]
T
Tongxin Bai 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287

    return g_shape, g_masks


def has_duplicated_labels(labels):
    '''
    Returns True if there is any duplicate label.
    '''
    labels = labels.replace('.', '')
    return len(labels) > len(set(labels))


def diagonalize(labels, operand):
    '''
288 289
    Merges dimensions with duplicate labels.

T
Tongxin Bai 已提交
290
    For those dimensions with duplicate labels, merge them into one dimension
291 292
    which represents the diagonal elements. This requires the dimensions with
    duplicate labels are equal sized.
293

T
Tongxin Bai 已提交
294
    Examples
295
    --------
T
Tongxin Bai 已提交
296 297
    'ijj...i' would be merged into 'ij...'
    '''
298
    assert not has_duplicated_labels(labels), (
299
        'Duplicate labels are not supported.')
T
Tongxin Bai 已提交
300

301
    return labels, operand
T
Tongxin Bai 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317


def plan_reduce(plan, op, reduce_dims, keepdim):
    '''
    Add reduce to the plan
    '''
    varname = f'op{op}'

    f = lambda var, dims: paddle_sum(var, dims, keepdim=keepdim)
    step = f, [varname], varname, reduce_dims
    plan.add_step(step)


def plan_scalar_prod(plan, op1, op2):
    varnames = [f'op{op1}', f'op{op2}']
    f = lambda var1, var2: paddle_sum(var1) * var2
318
    # f = lambda var1, var2: var1 * var2
T
Tongxin Bai 已提交
319 320 321 322
    step = f, varnames, varnames[1]
    plan.add_step(step)


323
def plan_matmul(plan, g_view, op1, op2, g_supports, g_shape, I, J1, J2, K):
T
Tongxin Bai 已提交
324 325 326 327 328 329 330 331 332
    '''
    plan matmul
    '''
    # Transpose and re-shape op1 and op2 in I, J1, K and I, J2, K
    # Then apply matmul(x, y, transpose_x=False, tranpose_y=True)
    var1, var2 = f'op{op1}', f'op{op2}'

    op1_view, op2_view = [g_view[op] for op in (op1, op2)]

333 334 335 336
    I1 = [idx for idx in I if op1_view[idx] >= 0]
    I2 = [idx for idx in I if op2_view[idx] >= 0]
    op1_view = np.array(op1_view)
    op1_dims = op1_view[I1 + J1 + K]
T
Tongxin Bai 已提交
337

338 339
    op2_view = np.array(op2_view)
    op2_dims = op2_view[I2 + J2 + K]
T
Tongxin Bai 已提交
340

341 342 343 344
    op1_mask, op2_mask = [g_supports[op] for op in (op1, op2)]
    op1_vshape = np.array([s if m else 1 for s, m in zip(g_shape, op1_mask)])
    op2_vshape = np.array([s if m else 1 for s, m in zip(g_shape, op2_mask)])
    vshape = np.maximum(op1_vshape, op2_vshape)
T
Tongxin Bai 已提交
345

346
    i1, i2, j1, j2, k = map(len, (I1, I2, J1, J2, K))
T
Tongxin Bai 已提交
347

348
    if any(op1_dims != np.arange(len(op1_dims))):
T
Tongxin Bai 已提交
349
        # print(f'perm1: {perm1}')
350
        step = transpose, [var1], var1, list(op1_dims)
T
Tongxin Bai 已提交
351 352
        plan.add_step(step)

353
    if any(op2_dims != np.arange(len(op2_dims))):
T
Tongxin Bai 已提交
354
        # print(f'perm2: {perm2}')
355
        step = transpose, [var2], var2, list(op2_dims)
T
Tongxin Bai 已提交
356 357
        plan.add_step(step)

358 359 360 361 362 363 364
    # Check if conditions hold for turnning the operation into a matmul
    if j1 + j2 > 0 and k > 0 and -1 not in np.concatenate(
        (op1_vshape, op2_vshape)):
        op1_shape = list(op1_vshape[I]) + [np.prod(op1_vshape[J1])
                                           ] + [np.prod(op1_vshape[K])]
        op2_shape = list(op2_vshape[I]) + [np.prod(op2_vshape[J2])
                                           ] + [np.prod(op2_vshape[K])]
T
Tongxin Bai 已提交
365

366 367
        # Merge J dims and K dims by reshaping
        step = reshape, [var1], var1, op1_shape
T
Tongxin Bai 已提交
368
        plan.add_step(step)
369
        step = reshape, [var2], var2, op2_shape
T
Tongxin Bai 已提交
370 371 372 373 374 375
        plan.add_step(step)

        # Matmul
        step = matmul, [var1, var2], var2, False, True
        plan.add_step(step)

376 377 378
        # Reshape back
        shape = list(vshape[I + J1 + J2])
        step = reshape, [var2], var2, shape
T
Tongxin Bai 已提交
379 380
        plan.add_step(step)

381 382 383 384 385
    elif j1 == j2 == k == 1:
        # Can still do matmul even unknown shapes are present
        step = matmul, [var1, var2], var2, False, True
        plan.add_step(step)

386
    # In the rest cases we opt for ops other than matmul
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    else:
        # unsqueeze operands include J1...J2... dimensions
        if j2:
            fill = list(range(i1 + j1, i1 + j1 + j2))
            step = unsqueeze, [var1], var1, fill
            plan.add_step(step)
        if j1:
            fill = list(range(i2, i2 + j1))
            step = unsqueeze, [var2], var2, fill
            plan.add_step(step)
        # In case of no dimensions to contract, do an elementwise multiply
        if k == 0:
            # make broadcast
            step = multiply, [var1, var2], var2
            plan.add_step(step)
        # Contract and no join, turn into a dot
        elif j1 + j2 == 0 and k == 1:
            step = unsqueeze, [var1], var1, [-2]
            plan.add_step(step)
            step = unsqueeze, [var2], var2, [-1]
            plan.add_step(step)
            step = matmul, [var1, var2], var2
            plan.add_step(step)
            step = squeeze, [var2], var2, [-1, -2]
            plan.add_step(step)
412
        elif j1 + j2 == 0 and -1 not in np.concatenate(
413 414
            (op1_vshape[K], op2_vshape[K])):
            assert all(op1_vshape[K] == op2_vshape[K])
415 416 417
            step = reshape, [
                var1
            ], var1, list(op1_vshape[I]) + [1] + [np.prod(op1_vshape[K])]
418
            plan.add_step(step)
419 420 421
            step = reshape, [
                var2
            ], var2, list(op2_vshape[I]) + [1] + [np.prod(op2_vshape[K])]
422 423 424 425 426 427 428 429 430 431 432
            plan.add_step(step)
            step = matmul, [var1, var2], var2, False, True
            plan.add_step(step)
            step = squeeze, [var2], var2, [-1, -2]
            plan.add_step(step)
        else:
            step = multiply, [var1, var2], var2
            plan.add_step(step)
            reduce_dims = list(range(-k, 0))
            plan_reduce(plan, op2, reduce_dims, keepdim=False)

T
Tongxin Bai 已提交
433 434
    # Wrap up, updating auxiliary data
    # Updating g_mask for I and J axes
435 436
    for ax in I + J1 + J2:
        op2_mask[ax] = vshape[ax] > 1 or vshape[ax] == -1
T
Tongxin Bai 已提交
437 438 439 440 441 442 443 444 445 446

    for ax in K:
        op2_mask[ax] = False

    for ax in range(len(op2_view)):
        op2_view[ax] = -1
    dim = 0
    for ax in I + J1 + J2:
        op2_view[ax], dim = dim, dim + 1

447 448
    g_view[op2] = list(op2_view)

T
Tongxin Bai 已提交
449

450
def plan_summation(plan, g_view, op1, op2, g_supports, g_shape, g_count,
T
Tongxin Bai 已提交
451 452 453 454 455
                   n_bcast):
    '''
    Plan various kinds of summation
    '''
    op1_view, op2_view = g_view[op1], g_view[op2]
456
    op1_mask, op2_mask = g_supports[op1], g_supports[op2]
T
Tongxin Bai 已提交
457 458 459 460 461 462 463 464

    ndim = len(op1_view)
    nout = ndim - len(g_count)

    count = [0] * nout + g_count

    I, K, J1, J2 = list(range(n_bcast)), [], [], []

465 466
    for ax, dim1, dim2 in zip(range(n_bcast, ndim), op1_view[n_bcast:],
                              op2_view[n_bcast:]):
T
Tongxin Bai 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

        if (dim1 != -1) != (dim2 != -1):
            if dim1 != -1:
                J1.append(ax)
            else:
                J2.append(ax)
        elif dim1 != -1:
            fold = int(op1_mask[ax]) + int(op2_mask[ax])
            if ax >= nout and fold == count[ax]:
                # Ready to fold the dimensions
                K.append(ax)
                count[ax] -= fold
            else:
                I.append(ax)
                count[ax] -= max(fold - 1, 0)

    # Update g_count
    g_count[:] = count[nout:]

    # Now it's OK to merge the K dims as the same shape holds
    # print(f'I: {I}   J1: {J1}    J2: {J2}   K: {K}')
488
    plan_matmul(plan, g_view, op1, op2, g_supports, g_shape, I, J1, J2, K)
T
Tongxin Bai 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531


def rearrange(axes):
    perm, fill = [], []
    for ax, dim in enumerate(axes):
        if dim < 0:
            fill.append(ax)
        else:
            perm.append(dim)
    # Trivial permutation returns []
    if all(i == dim for i, dim in enumerate(perm)):
        perm = []

    return perm, fill


def plan_broadcast(plan, operands, nop_axes):
    '''
    Plan broadcast across
    '''
    nop = len(operands)
    varnames = [f'op{i}' for i in range(nop)]

    for i, op_axes in zip(range(nop), nop_axes):
        # Re-arrange the dimesions according to the global layout
        perm, fill = rearrange(op_axes)
        var = varnames[i]
        if perm:
            step = transpose, [var], var, perm
            plan.add_step(step)
        if fill:
            step = unsqueeze, [var], var, fill
            plan.add_step(step)

    def f(*args):
        expr = ' * '.join(varnames)
        return eval(expr, dict(zip(varnames, args)))

    step = f, varnames, None
    plan.add_step(step)


class Plan:
532

T
Tongxin Bai 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
    def __init__(self):
        self.env = {}
        self.steps = []

    def add_step(self, step):
        self.steps.append(step)

    def get_var(self, varname):
        return self.env[varname] if varname in self.env else None

    def set_var(self, varname, var):
        self.env[varname] = var

    def show(self):
        res = None
        for f, in_varnames, out_varname, *args in self.steps:
            print(repr((out_varname, f, *in_varnames, *args)))
        return res

    def execute(self):
        res = None
        for f, in_varnames, out_varname, *args in self.steps:
            res = f(*map(self.get_var, in_varnames), *args)
            if out_varname:
                self.set_var(out_varname, res)
        return res


561
def plan_einsum(operands, g_view, g_shape, g_supports, g_count, n_bcast):
T
Tongxin Bai 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
    '''
    Plans the actual execution steps.
    Results
    -------
    the execution plan
    '''
    nop = len(operands)
    ndim = len(g_view[0])
    nout = ndim - len(g_count)

    # Initialize a plan with an environment
    plan = Plan()
    op_names = [f'op{i}' for i in range(nop)]
    list(map(plan.set_var, op_names, operands))

    # In case no dimensions to combine, do broadcast straight across
    if not g_count:
        plan_broadcast(plan, operands, g_view)
        return plan

582 583 584
    # Down count degenerate contraction dimensions.
    for view, support in zip(g_view, g_supports):
        # To collect the down count number, we use a type casting trick
T
Tongxin Bai 已提交
585
        down_count = [
586 587
            int((d + 1) and (not s))
            for d, s in zip(view[nout:], support[nout:])
T
Tongxin Bai 已提交
588
        ]
589 590
        for i, count in enumerate(down_count):
            g_count[i] -= count
T
Tongxin Bai 已提交
591

592 593
    # Reduce any dimension for which g_support is set and g_count == 1
    for i, view, mask in zip(range(nop), g_view, g_supports):
T
Tongxin Bai 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
        to_reduce = []
        for dim, masked, count in zip(view[nout:], mask[nout:], g_count):
            to_reduce.append(dim if (masked and count == 1) else -1)

        reduce_dims = list(filter(lambda x: x > -1, to_reduce))
        if reduce_dims:
            plan_reduce(plan, i, reduce_dims, keepdim=True)

        # Unset mask and decrease g_count for the reduced dimensions
        for i, d in enumerate(to_reduce):
            ax = i + nout
            mask[ax] = mask[ax] and (d == -1)
            g_count[i] -= 0 if d == -1 else 1

    # Plan the summations over the operand sequence
    for i in range(nop):
        # plan a single step

        if i == 0:
            continue

        # We'd like to arrange the dimensions in the following way:
        # [I...  J... K...]
        # [I...  J... K...]
618 619
        # where
        #       I... are aligned and not to be combined immediately
T
Tongxin Bai 已提交
620 621 622 623 624 625 626 627 628 629 630 631
        #       J... are not aligned and not to be combined immediately
        #       K... are aligned and should be immediately combined
        # At this point the non-trivial broadcast dimensinos in K are already reduced
        # and removed. That means all K dimensions are aligned and their sizes are not 1.
        # We then inspect the layout of I,J,K plus the above observation to make
        # specializatoin decisions.  The current strategy is set as follows:
        #  (1) if I... J... K... are all empty, it's multiplying a scalar
        #  (2) if K... are empty, better use a broadcast
        #  (3) if I... J... empty and K... not empty, a vector-vector multiply (or a dot)
        #  (4) Elsewise, either I... or J... not empty, and K... not empty, use a general matmul

        # Resolve the summation kind: dot, matmul or *
632 633
        if not any(g_supports[i - 1]):
            # op1 is a one element tensor.
T
Tongxin Bai 已提交
634 635
            plan_scalar_prod(plan, i - 1, i)
        else:
636
            plan_summation(plan, g_view, i - 1, i, g_supports, g_shape, g_count,
T
Tongxin Bai 已提交
637 638 639 640
                           n_bcast)

    # for ax, dim in enumerate(g_view[nop-1][:nout]):
    #     assert dim == ax
641
    assert all(not masked for masked in g_supports[nop - 1][nout:])
T
Tongxin Bai 已提交
642 643 644 645

    view = g_view[-1]
    if any(ax != dim for ax, dim in enumerate(view[:nout])):
        perm = [dim for dim in view if dim >= 0]
646 647 648 649
        if sorted(perm) != perm:
            varname = f'op{nop-1}'
            step = transpose, [varname], varname, perm
            plan.add_step(step)
T
Tongxin Bai 已提交
650
        dim = 0
651
        unsqueeze_dims = []
T
Tongxin Bai 已提交
652 653 654
        for ax, d in enumerate(view):
            if d != -1:
                view[ax], dim = dim, dim + 1
655 656 657 658 659 660 661
        for ax, d in enumerate(view[:nout]):
            if d == -1:
                unsqueeze_dims.append(ax)
        if unsqueeze_dims:
            varname = f'op{nop-1}'
            step = unsqueeze, [varname], varname, unsqueeze_dims
            plan.add_step(step)
T
Tongxin Bai 已提交
662 663 664 665 666 667 668 669 670 671 672

    squeeze_dims = [dim for dim in view[nout:] if dim != -1]
    if squeeze_dims:
        # plan_reduce(plan, nop-1, reduce_dims, keepdim=False)
        varname = f'op{nop-1}'
        step = squeeze, [varname], varname, squeeze_dims
        plan.add_step(step)

    return plan


673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
def preprocess(equation, *operands):
    """
    check equation / raise error, default right labels generation
    """
    equation = equation.replace(" ", "")
    nop = len(operands)
    assert nop > 0, "Required at least one operand in Einsum API, but received %s " % nop

    # Part the equation to left hand side and right hand side
    lhs, *rhs = equation.lower().split('->')
    assert len(rhs) < 2, "Invalid equation: multiple `->` were found."

    labels = parse_labels(lhs, operands)
    # Note, we distinguish between 'ij->' and 'ij' by setting rhs to '' and None
    rhs = rhs[0] if rhs else None
    if rhs is None:
        rhs = rhs_inference(lhs)

    assert len(lhs.split(',')) == len(operands), (
        f"Invalid equation: the number of operands is {len(operands)}, "
        f"but found {len(lhs.split(','))} segments in the label equation.")

    assert not ('...' in lhs and '...' not in rhs
696
                ), 'Invalid equation: missing ellipsis in output labels.'
697

698
    assert not (len(list(filter(has_duplicated_labels, lhs.split(',')))) >
699
                0), 'Duplicate labels are not supported.'
700 701

    assert not has_duplicated_labels(
702
        rhs), 'Invalid equation: duplicate output labels are found.'
703 704 705 706 707

    return lhs, rhs, labels


def parse_fake_shape(equation, operands, labels):
708
    """
709
    this shape is just used for operands planning. may differ with the original shape.
710
    for example:
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
    ... is replaced by 1
    -1  is replaced by 1
    Results
    -------
    list of shape
    """
    shaped = collections.namedtuple('shaped', ['shape'])

    def fake_shape(label, op):
        assert len(op.shape) == len(
            label
        ), "length of shape and length of label must be the same, but received %d != %d" % (
            len(op.shape), len(label))
        fakes = [s for i, (l, s) in enumerate(zip(label, op.shape)) if l != '.']
        fakes = list(map(abs, fakes))  # make -1 -> 1
        if '.' in label:
            fakes.insert(label.index('.'), 1)
        return shaped(fakes)

    out = list(map(fake_shape, labels, operands))
    return out


def rhs_inference(lhs):
735

736 737 738 739 740 741 742 743 744 745
    def is_free(key):
        return cnt.get(key) == 1 and key not in ['.', ',']

    cnt = collections.Counter(lhs)
    rhs = "..." if '...' in lhs else ""
    rhs = rhs + "".join(filter(is_free, sorted(cnt.elements())))
    return rhs


def gen_equation_for_opteinsum(lhs, rhs):
746
    """
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
    1. gen rhs if rhs is None
    2. '...' -> 'A'
    """

    def get_used_label(counter):
        used = set(counter.elements())
        for c in string.ascii_lowercase:
            if c not in used: return c
        raise ValueError(
            "You have used all `a` - `z`, there can't find a unused for einsum optimization"
        )

    cnt = collections.Counter(lhs)
    broadcast_label = get_used_label(cnt)
    if rhs is None:
        rhs = rhs_inference(lhs)
    lhs = lhs.replace("...", broadcast_label)
    rhs = rhs.replace("...", broadcast_label)
    return lhs + "->" + rhs, broadcast_label


768
def einsum_v2(equation, *operands):
769
    """
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
    einsum v2 implementation.
    1. Implement C++ EinsumOp.
    2. V2 create the EinsumOp to calculate, so just a little verifty work in python.
    3. V2 use opt_einsum.contract_path to optimize the multivariable einsum.
    """
    n_op = len(operands)
    lhs, rhs, labels = preprocess(equation, *operands)

    if n_op <= 2:
        return gen_einsum_op(lhs + '->' + rhs, *operands)

    shapes = parse_fake_shape(lhs, operands, labels)
    opt_equation, broadcast_label = gen_equation_for_opteinsum(lhs, rhs)
    _, cons = opt_einsum.contract_path(opt_equation, *shapes, einsum_call=True)
    var_list = list(operands)
    for path in cons:
        (a, b), _, eq, *__ = path
        assert a > b, "Assume the first var_idx is smaller than the second_idx. opt_einsum can guarantee it."
        var_s = [var_list.pop(a), var_list.pop(b)]
        eq = eq.replace(broadcast_label, "...")
        var_list.append(gen_einsum_op(eq, *var_s))
    assert len(
        var_list
    ) == 1, "There must be one elements in list, but received %d." % len(
        var_list)
    return var_list[0]


def gen_einsum_op(equation, *operands):
799 800
    """
    EinsumOp Python Interface:
801 802 803
    """
    assert len(operands) <= 2, "Only support two operands in EinsumOp."
    if in_dygraph_mode():
804
        return _C_ops.einsum(operands, equation)[0]
805

806 807
    if _in_legacy_dygraph():
        # dygraph
808 809
        return _legacy_C_ops.einsum(operands, len(operands), len(operands),
                                    'equation', equation)[0]
810

811 812 813 814 815 816 817
    for inp in operands:
        check_variable_and_dtype(inp, 'dtype', ['float32', 'float64'], 'einsum')
    check_type(equation, 'equation', str, 'einsum')
    helper = LayerHelper('einsum', **locals())
    out = helper.create_variable_for_type_inference(dtype=operands[0].dtype)
    attrs = dict()
    attrs['equation'] = equation
818 819 820 821
    caches = [
        helper.create_variable_for_type_inference(dtype=operands[0].dtype)
        for i in range(len(operands))
    ]
822 823 824 825
    xshape = [
        helper.create_variable_for_type_inference(dtype=operands[0].dtype)
        for i in range(len(operands))
    ]
826 827 828 829
    helper.append_op(type='einsum',
                     inputs={'Operands': operands},
                     outputs={
                         'Out': out,
830 831
                         "InnerCache": caches,
                         "XShape": xshape
832 833
                     },
                     attrs=attrs)
834 835 836
    return out


T
Tongxin Bai 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
def einsum(equation, *operands):
    r"""
    einsum(equation, *operands)

    The current version of this API should be used in dygraph only mode.

    Einsum offers a tensor operation API which allows using the Einstein summation
    convention or Einstain notation. It takes as input one or multiple tensors and
    produces as output one tensor.

    Einsum is able to perform a variety of tensor operations. Following lists a few:

        - for single operand
            - trace
            - diagonal
            - transpose
            - sum
        - for double operands
            - dot
            - outer
            - broadcasting and elementwise multiply
            - matrix multiply
            - batched matrix multiply
        - for many operads
            - broadcasting multiply
            - chained matrix multiply
863

T
Tongxin Bai 已提交
864 865 866 867 868 869 870
    **The summation notation**

        - The tensor dimensions are labeled using uncased English letters. E.g., `ijk`
        relates to a three dimensional tensor whose dimensions are labeled i, j, and k.
        - The equation is `,` separated into terms, each being a distinct input's
        dimension label string.
        - Ellipsis `...` enables broadcasting by automatically converting the unlabeled
871
        dimensions into broadcasting dimensions.
T
Tongxin Bai 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884
        - Singular labels are called free labels, duplicate are dummy labels. Dummy labeled
        dimensions will be reduced and removed in the output.
        - Output labels can be explicitly specified on the right hand side of `->` or omitted.
        In the latter case, the output labels will be inferred from the input labels.
            - Inference of output labels
                - Broadcasting label `...`, if present, is put on the leftmost position.
                - Free labels are reordered alphabetically and put after `...`.
            - On explicit output labels
                - If broadcasting is enabled, then `...` must be present.
                - The output labels can be an empty, an indication to output as a scalar
                the sum over the original output.
                - Non-input labels are invalid.
                - Duplicate labels are invalid.
H
HongyuJia 已提交
885
                - For any dummy label which is present for the output, it's promoted to
T
Tongxin Bai 已提交
886 887 888 889
                a free label.
                - For any free label which is not present for the output, it's lowered to
                a dummy label.
        - Examples
Z
zhiboniu 已提交
890
            - '...ij, ...jk', where i and k are free labels, j is dummy. The output label
T
Tongxin Bai 已提交
891
            string is '...ik'
892
            - 'ij -> i', where i is a free label and j is a dummy label.
Z
zhiboniu 已提交
893
            - '...ij, ...jk -> ...ijk', where i, j and k are all free labels.
T
Tongxin Bai 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
            - '...ij, ...jk -> ij', an invalid equation since `...` is not present for
            the output.

    **The summation rule**

    The summation procedure can be outlined as follows, although the actual steps taken
    may vary significantly due to implementation specific optimization.

        - Step 1: preparation for broadcasting, that is, transposing and unsqueezing
        the input operands to have each resulting dimension identically labeled across
        all the input operands.
        - Step 2: broadcasting multiply all the resulting operands from step 1.
        - Step 3: reducing dummy labeled dimensions.
        - Step 4: transposing the result tensor to match the output labels.

    **On trace and diagonal**

911
    The trace and diagonal are planned yet unimplemented features.
T
Tongxin Bai 已提交
912 913 914 915 916 917 918

    Args:
        equation (`str`):
            The summation terms using the Einstein summation notation.
        operands (`list|Tensor`):
            The input tensors over which to compute the Einstein summation. The number of
            operands should equal the number of input terms in the equation.
919

T
Tongxin Bai 已提交
920 921
    Returns:
        result (`Tensor`): the result tensor.
922

T
Tongxin Bai 已提交
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
    Examples:
        .. code-block:: python

        import paddle
        paddle.seed(102)
        x = paddle.rand([4])
        y = paddle.rand([5])

        # sum
        print(paddle.einsum('i->', x))
        # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   1.95791852)

        # dot
        print(paddle.einsum('i,i->', x, x))
        # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [1.45936954])
940

T
Tongxin Bai 已提交
941 942 943 944 945 946 947
        # outer
        print(paddle.einsum("i,j->ij", x, y))
        # Tensor(shape=[4, 5], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[0.00079869, 0.00120950, 0.00136844, 0.00187187, 0.00192194],
        #    [0.23455200, 0.35519385, 0.40186870, 0.54970956, 0.56441545],
        #    [0.11773264, 0.17828843, 0.20171674, 0.27592498, 0.28330654],
        #    [0.32897076, 0.49817693, 0.56364071, 0.77099484, 0.79162055]])
948

T
Tongxin Bai 已提交
949 950
        A = paddle.rand([2, 3, 2])
        B = paddle.rand([2, 2, 3])
951

T
Tongxin Bai 已提交
952 953 954 955 956 957 958 959 960 961
        # transpose
        print(paddle.einsum('ijk->kji', A))
        #  Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[[0.95649719, 0.49684682],
        #     [0.80071914, 0.46258664],
        #     [0.49814570, 0.33383518]],
        #
        #    [[0.07637714, 0.29374704],
        #     [0.51470858, 0.51907635],
        #     [0.99066722, 0.55802226]]])
962

T
Tongxin Bai 已提交
963 964 965 966 967 968 969 970 971 972
        # batch matrix multiplication
        print(paddle.einsum('ijk, ikl->ijl', A,B))
        # Tensor(shape=[2, 3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[[0.32172769, 0.50617385, 0.41394392],
        #     [0.51736701, 0.49921003, 0.38730967],
        #     [0.69078457, 0.42282537, 0.30161136]],
        #
        #    [[0.32043904, 0.18164253, 0.27810261],
        #     [0.50226176, 0.24512935, 0.39881429],
        #     [0.51476848, 0.23367381, 0.39229113]]])
973

T
Tongxin Bai 已提交
974 975 976 977 978 979 980 981
        # Ellipsis transpose
        print(paddle.einsum('...jk->...kj', A))
        # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[[0.95649719, 0.80071914, 0.49814570],
        #     [0.07637714, 0.51470858, 0.99066722]],
        #
        #    [[0.49684682, 0.46258664, 0.33383518],
        #     [0.29374704, 0.51907635, 0.55802226]]])
982

T
Tongxin Bai 已提交
983 984 985 986 987 988 989 990 991 992 993
        # Ellipsis batch matrix multiplication
        print(paddle.einsum('...jk, ...kl->...jl', A,B))
        # Tensor(shape=[2, 3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[[0.32172769, 0.50617385, 0.41394392],
        #     [0.51736701, 0.49921003, 0.38730967],
        #     [0.69078457, 0.42282537, 0.30161136]],
        #
        #    [[0.32043904, 0.18164253, 0.27810261],
        #     [0.50226176, 0.24512935, 0.39881429],
        #     [0.51476848, 0.23367381, 0.39229113]]])
    """
994
    import os
995
    if int(os.environ.get('FLAGS_new_einsum', "1")):
996
        return einsum_v2(equation, *operands)
T
Tongxin Bai 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

    nop = len(operands)
    assert nop > 0, "At least one operand is expected."

    # Part the equation to left hand side and right hand side
    lhs, *rhs = equation.lower().replace(' ', '').split('->')
    assert len(rhs) < 2, "Invalid equation: multiple `->` were found."

    # Note, we distinguish between 'ij->' and 'ij' by setting rhs to '' and None
    rhs = rhs[0] if rhs else None

    # Parse labels for each operand and count the number of occurrences for each alphabet label
    nop_labels = parse_labels(lhs, operands)

    # Diagonalize the operands which have duplicate labels
    nop_labels, operands = list(zip(*map(diagonalize, nop_labels, operands)))

    # To handle broadcasting, we should first know how many dimensions are there
    # We need to use that number to generate output labels
    # e.g. 1 for ['ij', 'i.', '.k']
    n_bcast_dims = max(map(lambda s: s.count('.'), nop_labels))

    # Build the data structures for planning. It's helpful to think of all the operands
1020
    # broadcasting together from a global view. In this view, dimensions from multiple
T
Tongxin Bai 已提交
1021 1022
    # operands are mapped to the same position if they are labeled uniquely. Broadcasting
    # dimensions are mapped to adjacent positions with the right bound fixed. Subject to
1023
    # each operand, the map is injective but for all operands the map is on-to.
T
Tongxin Bai 已提交
1024
    # g_labels:
1025
    #   The labels of the global view
T
Tongxin Bai 已提交
1026 1027 1028 1029 1030 1031 1032 1033
    # g_view:
    #   Includes a list of maps from each operand's dimensions to the global view's dimensions
    #   which we refer to as ax or axes in the code to distinguish from operand's dims
    # g_shape:
    #   The shape of the global view. The size of each dimension is what the aligned dimensions
    #   should broadcast to
    # g_nout:
    #   Number of output axes
1034 1035
    # g_supports
    #   Booleans indicating each operand's non-trivial dimensions
T
Tongxin Bai 已提交
1036 1037 1038
    # g_count
    #   Counting how many non-trivial dimensions remain for each ax

1039 1040
    g_labels, g_view, g_nout, g_count = build_global_view(
        nop_labels, rhs, n_bcast_dims)
1041
    g_shape, g_supports = build_global_shape(g_view, g_labels,
T
Tongxin Bai 已提交
1042 1043 1044
                                             [op.shape for op in operands])

    # Now we're ready to build up an execution plan
1045
    args = operands, g_view, g_shape, g_supports, g_count, n_bcast_dims
T
Tongxin Bai 已提交
1046 1047 1048 1049
    plan = plan_einsum(*args)
    result = plan.execute()

    return result