c_embedding_op.cu 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/collective/c_embedding_op.h"
16
#include "paddle/fluid/framework/convert_utils.h"
17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/float16.h"
20
#include "paddle/phi/backends/gpu/gpu_primitives.h"
21

C
Chitsing KUI 已提交
22 23
DECLARE_bool(cudnn_deterministic);

24 25 26 27 28 29 30 31 32 33 34 35
namespace paddle {
namespace operators {

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <typename T, typename IndexT>
36 37 38 39 40 41 42 43
__global__ void CEmbedding(T *out,
                           const T *table,
                           const IndexT *ids,
                           const int rows,
                           const int columns,
                           const int64_t N,
                           const int64_t start_idx,
                           const int64_t end_idx,
44 45 46 47 48 49 50 51 52 53 54 55 56
                           const int64_t limit) {
  CUDA_KERNEL_LOOP(i, limit) {
    size_t row = i / columns;
    size_t col = i % columns;
    auto id = ids[row];

    if (id >= start_idx && id < end_idx) {
      auto real_idx = id - start_idx;
      PADDLE_ENFORCE(real_idx < N,
                     "The index is out of bounds, "
                     "please check whether the dimensions of index and "
                     "input meet the requirements. It should "
                     "be less than [%d], but received [%d]",
57 58
                     N,
                     real_idx);
59 60 61 62 63 64 65 66
      out[i] = table[real_idx * columns + col];
    } else {
      out[i] = static_cast<T>(0);
    }
  }
}

template <typename T, typename IndexT>
67 68 69 70 71 72 73 74 75
__global__ void CEmbeddingGrad(T *table,
                               const T *output,
                               const IndexT *ids,
                               const int rows,
                               const int columns,
                               const int64_t N,
                               const int64_t start_idx,
                               const int64_t end_idx,
                               const int64_t limit) {
76 77 78 79 80 81
  CUDA_KERNEL_LOOP(i, limit) {
    size_t row = i / columns;
    size_t col = i % columns;
    auto id = ids[row];
    if (id >= start_idx && id < end_idx) {
      auto real_idx = id - start_idx;
82
      phi::CudaAtomicAdd(&table[real_idx * columns + col], output[i]);
83 84 85 86
    }
  }
}

87
template <typename T, typename DeviceContext>
88 89 90
class CEmbeddingCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
91 92 93
    auto *table_t = context.Input<phi::DenseTensor>("W");
    auto *ids_t = context.Input<phi::DenseTensor>("Ids");
    auto *output_t = context.Output<phi::DenseTensor>("Out");
94

L
Leo Chen 已提交
95
    const auto &dev_ctx = context.template device_context<phi::GPUContext>();
96 97 98 99 100 101 102 103 104 105 106 107 108 109
    const int64_t start_idx = context.Attr<int64_t>("start_index");
    size_t N = table_t->dims()[0];
    size_t D = table_t->dims()[1];
    size_t K = ids_t->numel();

    const int64_t end_idx = start_idx + N;

    auto *table = table_t->data<T>();
    auto *output = output_t->mutable_data<T>(context.GetPlace());

    auto limit = K * D;
    int blocks = NumBlocks(limit);
    int threads = kNumCUDAThreads;

110
    const auto &index_type = framework::TransToProtoVarType(ids_t->dtype());
111
    if (index_type == framework::proto::VarType::INT32) {
112 113 114 115 116 117 118 119 120 121
      CEmbedding<T, int32_t>
          <<<blocks, threads, 0, dev_ctx.stream()>>>(output,
                                                     table,
                                                     ids_t->data<int32_t>(),
                                                     K,
                                                     D,
                                                     N,
                                                     start_idx,
                                                     end_idx,
                                                     limit);
122 123

    } else if (index_type == framework::proto::VarType::INT64) {
124 125 126 127 128 129 130 131 132 133
      CEmbedding<T, int64_t>
          <<<blocks, threads, 0, dev_ctx.stream()>>>(output,
                                                     table,
                                                     ids_t->data<int64_t>(),
                                                     K,
                                                     D,
                                                     N,
                                                     start_idx,
                                                     end_idx,
                                                     limit);
B
Baibaifan 已提交
134 135 136
    } else {
      PADDLE_THROW(platform::errors::Unavailable(
          "GPU c_embedding ids only support int32 or int64."));
137 138 139 140
    }
  }
};

141
template <typename T, typename DeviceContext>
142 143 144
class CEmbeddingGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
L
Leo Chen 已提交
145
    const auto &dev_ctx = context.template device_context<phi::GPUContext>();
146
    const int64_t start_idx = context.Attr<int64_t>("start_index");
147 148 149 150 151
    auto ids_t = context.Input<phi::DenseTensor>("Ids");
    auto d_output_t =
        context.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto d_table_t =
        context.Output<phi::DenseTensor>(framework::GradVarName("W"));
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

    int N = d_table_t->dims()[0];
    int D = d_table_t->dims()[1];
    int K = ids_t->numel();

    const int64_t end_idx = start_idx + N;
    auto limit = K * D;
    int blocks = NumBlocks(limit);
    int threads = kNumCUDAThreads;

    const T *d_output = d_output_t->data<T>();
    T *d_table = d_table_t->mutable_data<T>(context.GetPlace());

    auto t = framework::EigenVector<T>::Flatten(*d_table_t);
    t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));

168
    const auto &index_type = framework::TransToProtoVarType(ids_t->dtype());
C
Chitsing KUI 已提交
169 170 171 172
    if (FLAGS_cudnn_deterministic) {
      VLOG(2) << "Run grad kernel of embedding with single thread.";
      blocks = 1;
    }
173
    if (index_type == framework::proto::VarType::INT32) {
174 175 176 177 178 179 180 181 182 183
      CEmbeddingGrad<T, int32_t>
          <<<blocks, threads, 0, dev_ctx.stream()>>>(d_table,
                                                     d_output,
                                                     ids_t->data<int32_t>(),
                                                     K,
                                                     D,
                                                     N,
                                                     start_idx,
                                                     end_idx,
                                                     limit);
184
    } else if (index_type == framework::proto::VarType::INT64) {
185 186 187 188 189 190 191 192 193 194
      CEmbeddingGrad<T, int64_t>
          <<<blocks, threads, 0, dev_ctx.stream()>>>(d_table,
                                                     d_output,
                                                     ids_t->data<int64_t>(),
                                                     K,
                                                     D,
                                                     N,
                                                     start_idx,
                                                     end_idx,
                                                     limit);
195 196 197 198 199 200 201 202 203
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
204 205 206 207 208 209 210

PD_REGISTER_STRUCT_KERNEL(c_embedding,
                          GPU,
                          ALL_LAYOUT,
                          ops::CEmbeddingCUDAKernel,
                          float,
                          double,
211
#if NCCL_VERSION_CODE >= 21000
212
                          plat::bfloat16,
213
#endif
214 215 216 217 218 219 220 221 222
                          plat::float16) {
}

PD_REGISTER_STRUCT_KERNEL(c_embedding_grad,
                          GPU,
                          ALL_LAYOUT,
                          ops::CEmbeddingGradCUDAKernel,
                          float,
                          double,
223
#if NCCL_VERSION_CODE >= 21000
224
                          plat::bfloat16,
225
#endif
226 227
                          plat::float16) {
}