test_fold_op.py 7.4 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import math
import numpy as np
import unittest
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import core

paddle.enable_static()


class TestFoldOp(OpTest):
    """
    This is for test on fold Op
    """

    def init_data(self):
        self.batch_size = 3
        self.input_channels = 3 * 2 * 2
        self.length = 12
        self.kernel_sizes = [2, 2]
        self.strides = [1, 1]
        self.paddings = [0, 0, 0, 0]
        self.dilations = [1, 1]
        self.output_sizes = [4, 5]
        input_shape = [self.batch_size, self.input_channels, self.length]
        self.x = np.random.rand(*input_shape).astype(np.float64)

    def calc_fold(self):
        output_shape = [0] * 4
        output_shape[0] = self.batch_size
        output_shape[1] = int(self.input_channels /
                              (self.kernel_sizes[0] * self.kernel_sizes[1]))
        output_shape[2] = self.output_sizes[0]
        output_shape[3] = self.output_sizes[1]
        dkernel_h = self.dilations[0] * (self.kernel_sizes[0] - 1) + 1
        dkernel_w = self.dilations[1] * (self.kernel_sizes[1] - 1) + 1
        col_height = int((self.output_sizes[0] + self.paddings[0] +
                          self.paddings[2] - dkernel_h) / self.strides[0]) + 1
        col_width = int((self.output_sizes[1] + self.paddings[1] +
                         self.paddings[3] - dkernel_w) / self.strides[1]) + 1
        output = np.zeros(output_shape).astype(np.float64)
        ############ calculate output ##############
        for b in range(output_shape[0]):
            for c in range(self.input_channels):
                w_offset = int(c % self.kernel_sizes[1])
                h_offset = int(
                    (c / self.kernel_sizes[1]) % self.kernel_sizes[0])
                c_out = int(c / self.kernel_sizes[0] / self.kernel_sizes[1])
                for h in range(col_height):
                    h_out = int(h * self.strides[0] - self.paddings[0] +
                                h_offset * self.dilations[0])
                    for w in range(col_width):
                        w_out = int(w * self.strides[1] - self.paddings[1] +
                                    w_offset * self.dilations[1])
                        if (h_out >= 0 and h_out < self.output_sizes[0]) and (
                                w_out >= 0 and w_out < self.output_sizes[1]):
                            output[b, c_out, h_out, w_out] += self.x[
                                b, c, w + col_width * h]

        self.outputs = output

    def set_data(self):
        self.init_data()
        self.calc_fold()
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.attrs = {
            'kernel_sizes': self.kernel_sizes,
            'paddings': self.paddings,
            'dilations': self.dilations,
            'strides': self.strides,
            'output_sizes': self.output_sizes
        }
        self.outputs = {'Y': self.outputs}

    def setUp(self):
        self.op_type = 'fold'
        self.set_data()

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y')


class TestFoldAPI(TestFoldOp):

    #This is for test on paddle.nn.Fold

    def setUp(self):
        self.op_type = 'fold'
        self.set_data()
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_api(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input = paddle.to_tensor(self.x)
                m = paddle.nn.Fold(**self.attrs)
                m.eval()
                result = m(input)
                self.assertTrue(np.allclose(result.numpy(), self.outputs['Y']))

    def test_info(self):
        str(paddle.nn.Fold(**self.attrs))


class TestFoldOpError(unittest.TestCase):
    def test_errors(self):
        from paddle.nn.functional import fold
        from paddle.fluid.framework import Program, program_guard
        with program_guard(Program(), Program()):

            def test_input_shape():
                # input_shpae must be 3-D
                x = paddle.randn(shape=[2, 3, 6, 7], dtype="float32")
                out = fold(x, output_sizes=[2, 3], kernel_sizes=[2, 2])

            def test_kernel_shape():
                # kernel_size must be 2
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
                out = fold(x, output_sizes=[2, 3], kernel_sizes=[2, 2, 3])

            def test_padding_shape():
                # padding_size must be 2 or 4
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
                out = fold(
                    x,
                    output_sizes=[2, 3],
                    kernel_sizes=[2, 2],
                    paddings=[2, 2, 3])

            def test_dilations_shape():
                # dialtions_size must be 2 
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
                out = fold(
                    x,
                    output_sizes=[2, 3],
                    kernel_sizes=[2, 2],
                    dilations=[2, 2, 3])

            def test_strides_shape():
                # strids_size must be 2
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
                out = fold(
                    x,
                    output_sizes=[2, 3],
                    kernel_sizes=[2, 2],
                    strides=[2, 2, 3])

            def test_output_size():
                # im_h * im_w must be L
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
                out = fold(
                    x, output_sizes=[6, 6], kernel_sizes=[2, 2],
                    strides=[1, 1])

            def test_block_h_w():
                # test_block_h_w GT 0
                x = paddle.randn(shape=[2, 1, 1], dtype="float32")
                out = fold(
                    x, output_sizes=[1, 1], kernel_sizes=[2, 2], strides=1)

            def test_GT_0():
                x = paddle.randn(shape=[2, 1, 1], dtype="float32")
                out = fold(
                    x,
                    output_sizes=[0, 0],
                    kernel_sizes=[0, 0],
                    dilations=0,
                    paddings=[0, 0],
                    strides=0)

            self.assertRaises(AssertionError, test_input_shape)
            self.assertRaises(AssertionError, test_kernel_shape)
            self.assertRaises(ValueError, test_padding_shape)
            self.assertRaises(AssertionError, test_dilations_shape)
            self.assertRaises(AssertionError, test_strides_shape)
            self.assertRaises(ValueError, test_output_size)
            self.assertRaises(ValueError, test_block_h_w)
            self.assertRaises(ValueError, test_GT_0)


if __name__ == '__main__':
    unittest.main()