maxouting.cc 4.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/maxouting.h"
W
wanghaox 已提交
16

17 18
#include "paddle/phi/backends/cpu/cpu_context.h"

W
wanghaox 已提交
19 20 21 22
namespace paddle {
namespace operators {
namespace math {

23
// All tensors are in NCHW or NHWC format, and the groups must be greater than 1
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
template <typename DeviceContext, typename T>
void MaxOutFunctor<DeviceContext, T>::operator()(const DeviceContext& context,
                                                 const framework::Tensor& input,
                                                 framework::Tensor* output,
                                                 const int groups,
                                                 const int axis) {
  const int batch_size = input.dims()[0];
  const int input_height = (axis == 1 ? input.dims()[2] : input.dims()[1]);
  const int input_width = (axis == 1 ? input.dims()[3] : input.dims()[2]);
  const int output_channels = output->dims()[axis];
  int fea_size = input_height * input_width;
  // c_size means the output size of each sample
  int c_size = fea_size * output_channels;
  const T* input_data = input.data<T>();
  T* output_data = output->mutable_data<T>(context.GetPlace());
  for (int i = 0; i < batch_size; ++i) {
    int new_bindex = c_size * i;
    for (int c = 0; c < output_channels; ++c) {
      int new_cindex = fea_size * c;
      for (int f = 0; f < fea_size; ++f) {
        T ele = static_cast<T>(-FLT_MAX);
        int input_idx, output_idx;
        for (int ph = 0; ph < groups; ++ph) {
47
          if (axis == 1) {
48
            input_idx = (new_bindex + new_cindex) * groups + ph * fea_size + f;
49
          } else {
50
            input_idx = (new_bindex + f * output_channels + c) * groups + ph;
51
          }
52 53
          T x = input_data[input_idx];
          ele = ele > x ? ele : x;
W
wanghaox 已提交
54
        }
55 56 57 58 59 60
        if (axis == 1) {
          output_idx = new_bindex + new_cindex + f;
        } else {
          output_idx = new_bindex + f * output_channels + c;
        }
        output_data[output_idx] = ele;
W
wanghaox 已提交
61 62 63
      }
    }
  }
64
}
W
wanghaox 已提交
65

66 67 68 69 70 71 72 73 74 75 76 77 78 79
template <typename DeviceContext, typename T>
void MaxOutGradFunctor<DeviceContext, T>::operator()(
    const DeviceContext& context, const framework::Tensor& input,
    framework::Tensor* input_grad, const framework::Tensor& output,
    const framework::Tensor& output_grad, const int groups, const int axis) {
  const int batch_size = input.dims()[0];
  const int input_height = (axis == 1 ? input.dims()[2] : input.dims()[1]);
  const int input_width = (axis == 1 ? input.dims()[3] : input.dims()[2]);
  const int output_channels = output.dims()[axis];
  int fea_size = input_height * input_width;
  const T* input_data = input.data<T>();
  const T* output_data = output.data<T>();
  const T* output_grad_data = output_grad.data<T>();
  T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
W
wanghaox 已提交
80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  for (int i = 0; i < batch_size; ++i) {
    int blen = fea_size * output_channels * i;
    for (int c = 0; c < output_channels; ++c) {
      int clen = fea_size * c;
      for (int f = 0; f < fea_size; ++f) {
        int input_idx0, output_idx;
        bool continue_match = true;
        if (axis == 1) {
          input_idx0 = (blen + clen) * groups + f;
          output_idx = blen + clen + f;
        } else {
          input_idx0 = (blen + f * output_channels + c) * groups;
          output_idx = blen + f * output_channels + c;
        }
        for (int g = 0; g < groups && continue_match; ++g) {
          int idx_offset = (axis == 1 ? fea_size * g : g);
          int input_idx = input_idx0 + idx_offset;
          if (input_data[input_idx] == output_data[output_idx]) {
            input_grad_data[input_idx] += output_grad_data[output_idx];
            continue_match = false;
W
wanghaox 已提交
101 102 103 104 105
          }
        }
      }
    }
  }
106
}
W
wanghaox 已提交
107

Q
QI JUN 已提交
108 109 110 111
template class MaxOutGradFunctor<platform::CPUDeviceContext, float>;
template class MaxOutGradFunctor<platform::CPUDeviceContext, double>;
template class MaxOutFunctor<platform::CPUDeviceContext, float>;
template class MaxOutFunctor<platform::CPUDeviceContext, double>;
W
wanghaox 已提交
112

113 114 115 116 117
template class MaxOutGradFunctor<phi::CPUContext, float>;
template class MaxOutGradFunctor<phi::CPUContext, double>;
template class MaxOutFunctor<phi::CPUContext, float>;
template class MaxOutFunctor<phi::CPUContext, double>;

W
wanghaox 已提交
118 119 120
}  // namespace math
}  // namespace operators
}  // namespace paddle