Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
48b4366c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
48b4366c
编写于
3月 08, 2022
作者:
Y
Yang
提交者:
GitHub
3月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Phi] move ops: maxout/take_along_axis/put_along_axis (#39959)
* [Phi] move put_along_axis/take_along_axis/maxout * use phi::Copy
上级
00566ead
变更
36
隐藏空白更改
内联
并排
Showing
36 changed file
with
1191 addition
and
710 deletion
+1191
-710
paddle/fluid/operators/math/maxouting.cc
paddle/fluid/operators/math/maxouting.cc
+76
-75
paddle/fluid/operators/math/maxouting.cu
paddle/fluid/operators/math/maxouting.cu
+55
-52
paddle/fluid/operators/math/maxouting.h
paddle/fluid/operators/math/maxouting.h
+1
-1
paddle/fluid/operators/maxout_op.cc
paddle/fluid/operators/maxout_op.cc
+3
-10
paddle/fluid/operators/maxout_op.cu.cc
paddle/fluid/operators/maxout_op.cu.cc
+0
-24
paddle/fluid/operators/maxout_op.h
paddle/fluid/operators/maxout_op.h
+0
-72
paddle/fluid/operators/put_along_axis_op.cc
paddle/fluid/operators/put_along_axis_op.cc
+2
-14
paddle/fluid/operators/put_along_axis_op.cu
paddle/fluid/operators/put_along_axis_op.cu
+0
-134
paddle/fluid/operators/put_along_axis_op.h
paddle/fluid/operators/put_along_axis_op.h
+0
-124
paddle/fluid/operators/take_along_axis_op.cc
paddle/fluid/operators/take_along_axis_op.cc
+2
-14
paddle/fluid/operators/take_along_axis_op.cu
paddle/fluid/operators/take_along_axis_op.cu
+0
-97
paddle/fluid/operators/take_along_axis_op.h
paddle/fluid/operators/take_along_axis_op.h
+0
-92
paddle/phi/kernels/CMakeLists.txt
paddle/phi/kernels/CMakeLists.txt
+7
-1
paddle/phi/kernels/cpu/maxout_grad_kernel.cc
paddle/phi/kernels/cpu/maxout_grad_kernel.cc
+20
-0
paddle/phi/kernels/cpu/maxout_kernel.cc
paddle/phi/kernels/cpu/maxout_kernel.cc
+19
-0
paddle/phi/kernels/cpu/put_along_axis_grad_kernel.cc
paddle/phi/kernels/cpu/put_along_axis_grad_kernel.cc
+83
-0
paddle/phi/kernels/cpu/put_along_axis_kernel.cc
paddle/phi/kernels/cpu/put_along_axis_kernel.cc
+87
-0
paddle/phi/kernels/cpu/take_along_axis_grad_kernel.cc
paddle/phi/kernels/cpu/take_along_axis_grad_kernel.cc
+71
-0
paddle/phi/kernels/cpu/take_along_axis_kernel.cc
paddle/phi/kernels/cpu/take_along_axis_kernel.cc
+60
-0
paddle/phi/kernels/gpu/maxout_grad_kernel.cu
paddle/phi/kernels/gpu/maxout_grad_kernel.cu
+20
-0
paddle/phi/kernels/gpu/maxout_kernel.cu
paddle/phi/kernels/gpu/maxout_kernel.cu
+19
-0
paddle/phi/kernels/gpu/put_along_axis_grad_kernel.cu
paddle/phi/kernels/gpu/put_along_axis_grad_kernel.cu
+79
-0
paddle/phi/kernels/gpu/put_along_axis_kernel.cu
paddle/phi/kernels/gpu/put_along_axis_kernel.cu
+86
-0
paddle/phi/kernels/gpu/take_along_axis_grad_kernel.cu
paddle/phi/kernels/gpu/take_along_axis_grad_kernel.cu
+72
-0
paddle/phi/kernels/gpu/take_along_axis_kernel.cu
paddle/phi/kernels/gpu/take_along_axis_kernel.cu
+59
-0
paddle/phi/kernels/impl/maxout_grad_kernel_impl.h
paddle/phi/kernels/impl/maxout_grad_kernel_impl.h
+45
-0
paddle/phi/kernels/impl/maxout_kernel_impl.h
paddle/phi/kernels/impl/maxout_kernel_impl.h
+37
-0
paddle/phi/kernels/maxout_grad_kernel.h
paddle/phi/kernels/maxout_grad_kernel.h
+30
-0
paddle/phi/kernels/maxout_kernel.h
paddle/phi/kernels/maxout_kernel.h
+28
-0
paddle/phi/kernels/put_along_axis_grad_kernel.h
paddle/phi/kernels/put_along_axis_grad_kernel.h
+33
-0
paddle/phi/kernels/put_along_axis_kernel.h
paddle/phi/kernels/put_along_axis_kernel.h
+32
-0
paddle/phi/kernels/take_along_axis_grad_kernel.h
paddle/phi/kernels/take_along_axis_grad_kernel.h
+29
-0
paddle/phi/kernels/take_along_axis_kernel.h
paddle/phi/kernels/take_along_axis_kernel.h
+28
-0
paddle/phi/ops/compat/maxout_sig.cc
paddle/phi/ops/compat/maxout_sig.cc
+33
-0
paddle/phi/ops/compat/put_along_axis_sig.cc
paddle/phi/ops/compat/put_along_axis_sig.cc
+38
-0
paddle/phi/ops/compat/take_along_axis_sig.cc
paddle/phi/ops/compat/take_along_axis_sig.cc
+37
-0
未找到文件。
paddle/fluid/operators/math/maxouting.cc
浏览文件 @
48b4366c
...
...
@@ -14,106 +14,107 @@ limitations under the License. */
#include "paddle/fluid/operators/math/maxouting.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
// All tensors are in NCHW or NHWC format, and the groups must be greater than 1
template
<
typename
T
>
class
MaxOutFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
output
,
const
int
groups
,
const
int
axis
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
(
axis
==
1
?
input
.
dims
()[
2
]
:
input
.
dims
()[
1
]);
const
int
input_width
=
(
axis
==
1
?
input
.
dims
()[
3
]
:
input
.
dims
()[
2
]);
const
int
output_channels
=
output
->
dims
()[
axis
];
int
fea_size
=
input_height
*
input_width
;
// c_size means the output size of each sample
int
c_size
=
fea_size
*
output_channels
;
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
new_bindex
=
c_size
*
i
;
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
int
new_cindex
=
fea_size
*
c
;
for
(
int
f
=
0
;
f
<
fea_size
;
++
f
)
{
T
ele
=
static_cast
<
T
>
(
-
FLT_MAX
);
int
input_idx
,
output_idx
;
for
(
int
ph
=
0
;
ph
<
groups
;
++
ph
)
{
if
(
axis
==
1
)
{
input_idx
=
(
new_bindex
+
new_cindex
)
*
groups
+
ph
*
fea_size
+
f
;
}
else
{
input_idx
=
(
new_bindex
+
f
*
output_channels
+
c
)
*
groups
+
ph
;
}
T
x
=
input_data
[
input_idx
];
ele
=
ele
>
x
?
ele
:
x
;
}
template
<
typename
DeviceContext
,
typename
T
>
void
MaxOutFunctor
<
DeviceContext
,
T
>::
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
output
,
const
int
groups
,
const
int
axis
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
(
axis
==
1
?
input
.
dims
()[
2
]
:
input
.
dims
()[
1
]);
const
int
input_width
=
(
axis
==
1
?
input
.
dims
()[
3
]
:
input
.
dims
()[
2
]);
const
int
output_channels
=
output
->
dims
()[
axis
];
int
fea_size
=
input_height
*
input_width
;
// c_size means the output size of each sample
int
c_size
=
fea_size
*
output_channels
;
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
new_bindex
=
c_size
*
i
;
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
int
new_cindex
=
fea_size
*
c
;
for
(
int
f
=
0
;
f
<
fea_size
;
++
f
)
{
T
ele
=
static_cast
<
T
>
(
-
FLT_MAX
);
int
input_idx
,
output_idx
;
for
(
int
ph
=
0
;
ph
<
groups
;
++
ph
)
{
if
(
axis
==
1
)
{
output_idx
=
new_bindex
+
new_cindex
+
f
;
input_idx
=
(
new_bindex
+
new_cindex
)
*
groups
+
ph
*
fea_size
+
f
;
}
else
{
output_idx
=
new_bindex
+
f
*
output_channels
+
c
;
input_idx
=
(
new_bindex
+
f
*
output_channels
+
c
)
*
groups
+
ph
;
}
output_data
[
output_idx
]
=
ele
;
T
x
=
input_data
[
input_idx
];
ele
=
ele
>
x
?
ele
:
x
;
}
if
(
axis
==
1
)
{
output_idx
=
new_bindex
+
new_cindex
+
f
;
}
else
{
output_idx
=
new_bindex
+
f
*
output_channels
+
c
;
}
output_data
[
output_idx
]
=
ele
;
}
}
}
}
;
}
template
<
class
T
>
class
MaxOutGradFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
const
int
groups
,
const
int
axis
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
(
axis
==
1
?
input
.
dims
()[
2
]
:
input
.
dims
()[
1
]);
const
int
input_width
=
(
axis
==
1
?
input
.
dims
()[
3
]
:
input
.
dims
()[
2
]);
const
int
output_channels
=
output
.
dims
()[
axis
];
int
fea_size
=
input_height
*
input_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
template
<
typename
DeviceContext
,
typename
T
>
void
MaxOutGradFunctor
<
DeviceContext
,
T
>::
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
const
int
groups
,
const
int
axis
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
(
axis
==
1
?
input
.
dims
()[
2
]
:
input
.
dims
()[
1
]);
const
int
input_width
=
(
axis
==
1
?
input
.
dims
()[
3
]
:
input
.
dims
()[
2
]);
const
int
output_channels
=
output
.
dims
()[
axis
];
int
fea_size
=
input_height
*
input_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
blen
=
fea_size
*
output_channels
*
i
;
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
int
clen
=
fea_size
*
c
;
for
(
int
f
=
0
;
f
<
fea_size
;
++
f
)
{
int
input_idx0
,
output_idx
;
bool
continue_match
=
true
;
if
(
axis
==
1
)
{
input_idx0
=
(
blen
+
clen
)
*
groups
+
f
;
output_idx
=
blen
+
clen
+
f
;
}
else
{
input_idx0
=
(
blen
+
f
*
output_channels
+
c
)
*
groups
;
output_idx
=
blen
+
f
*
output_channels
+
c
;
}
for
(
int
g
=
0
;
g
<
groups
&&
continue_match
;
++
g
)
{
int
idx_offset
=
(
axis
==
1
?
fea_size
*
g
:
g
);
int
input_idx
=
input_idx0
+
idx_offset
;
if
(
input_data
[
input_idx
]
==
output_data
[
output_idx
])
{
input_grad_data
[
input_idx
]
+=
output_grad_data
[
output_idx
];
continue_match
=
false
;
}
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
blen
=
fea_size
*
output_channels
*
i
;
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
int
clen
=
fea_size
*
c
;
for
(
int
f
=
0
;
f
<
fea_size
;
++
f
)
{
int
input_idx0
,
output_idx
;
bool
continue_match
=
true
;
if
(
axis
==
1
)
{
input_idx0
=
(
blen
+
clen
)
*
groups
+
f
;
output_idx
=
blen
+
clen
+
f
;
}
else
{
input_idx0
=
(
blen
+
f
*
output_channels
+
c
)
*
groups
;
output_idx
=
blen
+
f
*
output_channels
+
c
;
}
for
(
int
g
=
0
;
g
<
groups
&&
continue_match
;
++
g
)
{
int
idx_offset
=
(
axis
==
1
?
fea_size
*
g
:
g
);
int
input_idx
=
input_idx0
+
idx_offset
;
if
(
input_data
[
input_idx
]
==
output_data
[
output_idx
])
{
input_grad_data
[
input_idx
]
+=
output_grad_data
[
output_idx
];
continue_match
=
false
;
}
}
}
}
}
}
;
}
template
class
MaxOutGradFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
class
MaxOutGradFunctor
<
platform
::
CPUDeviceContext
,
double
>;
template
class
MaxOutFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
class
MaxOutFunctor
<
platform
::
CPUDeviceContext
,
double
>;
template
class
MaxOutGradFunctor
<
phi
::
CPUContext
,
float
>;
template
class
MaxOutGradFunctor
<
phi
::
CPUContext
,
double
>;
template
class
MaxOutFunctor
<
phi
::
CPUContext
,
float
>;
template
class
MaxOutFunctor
<
phi
::
CPUContext
,
double
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/maxouting.cu
浏览文件 @
48b4366c
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/math/maxouting.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -95,61 +96,57 @@ __global__ void KernelMaxoutGrad(const int nthreads, const T* input_data,
/*
* All tensors are in NCHW or NHWC format.
*/
template
<
typename
T
>
class
MaxOutFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
contex
t
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
output
,
const
int
groups
,
const
int
axis
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
axis
];
const
int
input_height
=
(
axis
==
1
?
input
.
dims
()[
2
]
:
input
.
dims
()[
1
]);
const
int
input_width
=
(
axis
==
1
?
input
.
dims
()[
3
]
:
input
.
dims
()[
2
]);
const
int
output_channels
=
output
->
dims
()[
axis
];
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
output
->
numel
();
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelMaxOut
<
T
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
nthreads
,
input_data
,
input_channels
,
input_height
,
input_width
,
groups
,
axis
,
output_data
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
void
MaxOutFunctor
<
DeviceContext
,
T
>::
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
outpu
t
,
const
int
groups
,
const
int
axis
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
axis
];
const
int
input_height
=
(
axis
==
1
?
input
.
dims
()[
2
]
:
input
.
dims
()[
1
]);
const
int
input_width
=
(
axis
==
1
?
input
.
dims
()[
3
]
:
input
.
dims
()[
2
]);
const
int
output_channels
=
output
->
dims
()[
axis
];
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
output
->
numel
();
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelMaxOut
<
T
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
nthreads
,
input_data
,
input_channels
,
input_height
,
input_width
,
groups
,
axis
,
output_data
);
}
/*
* All tensors are in NCHW or NHWC format.
*/
template
<
typename
T
>
class
MaxOutGradFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
const
int
groups
,
const
int
axis
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
axis
];
const
int
input_height
=
(
axis
==
1
?
input
.
dims
()[
2
]
:
input
.
dims
()[
1
]);
const
int
input_width
=
(
axis
==
1
?
input
.
dims
()[
3
]
:
input
.
dims
()[
2
]);
const
int
output_channels
=
output
.
dims
()[
axis
];
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
output
.
numel
();
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelMaxoutGrad
<
T
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
nthreads
,
input_data
,
output_data
,
output_grad_data
,
input_grad_data
,
input_channels
,
input_height
,
input_width
,
groups
,
axis
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
void
MaxOutGradFunctor
<
DeviceContext
,
T
>::
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
const
int
groups
,
const
int
axis
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
axis
];
const
int
input_height
=
(
axis
==
1
?
input
.
dims
()[
2
]
:
input
.
dims
()[
1
]);
const
int
input_width
=
(
axis
==
1
?
input
.
dims
()[
3
]
:
input
.
dims
()[
2
]);
const
int
output_channels
=
output
.
dims
()[
axis
];
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
output
.
numel
();
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelMaxoutGrad
<
T
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
nthreads
,
input_data
,
output_data
,
output_grad_data
,
input_grad_data
,
input_channels
,
input_height
,
input_width
,
groups
,
axis
);
}
template
class
MaxOutGradFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
class
MaxOutGradFunctor
<
platform
::
CUDADeviceContext
,
double
>;
...
...
@@ -157,6 +154,12 @@ template class MaxOutGradFunctor<platform::CUDADeviceContext, double>;
template
class
MaxOutFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
class
MaxOutFunctor
<
platform
::
CUDADeviceContext
,
double
>;
template
class
MaxOutGradFunctor
<
phi
::
GPUContext
,
float
>;
template
class
MaxOutGradFunctor
<
phi
::
GPUContext
,
double
>;
template
class
MaxOutFunctor
<
phi
::
GPUContext
,
float
>;
template
class
MaxOutFunctor
<
phi
::
GPUContext
,
double
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/maxouting.h
浏览文件 @
48b4366c
...
...
@@ -30,7 +30,7 @@ class MaxOutFunctor {
const
int
axis
=
1
);
};
template
<
typename
DeviceContext
,
class
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
MaxOutGradFunctor
{
public:
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
...
...
paddle/fluid/operators/maxout_op.cc
浏览文件 @
48b4366c
...
...
@@ -12,14 +12,14 @@
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/maxout_op.h"
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
MaxOutOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
...
...
@@ -130,10 +130,3 @@ REGISTER_OPERATOR(
paddle
::
framework
::
DefaultGradOpMaker
<
paddle
::
framework
::
OpDesc
,
true
>
,
paddle
::
framework
::
DefaultGradOpMaker
<
paddle
::
imperative
::
OpBase
,
true
>
);
REGISTER_OPERATOR
(
maxout_grad
,
ops
::
MaxOutOpGrad
);
REGISTER_OP_CPU_KERNEL
(
maxout
,
ops
::
MaxOutKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
MaxOutKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
maxout_grad
,
ops
::
MaxOutGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
MaxOutGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/maxout_op.cu.cc
已删除
100644 → 0
浏览文件 @
00566ead
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/maxout_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
maxout
,
ops
::
MaxOutKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
MaxOutKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
maxout_grad
,
ops
::
MaxOutGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
MaxOutGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/maxout_op.h
已删除
100644 → 0
浏览文件 @
00566ead
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/maxouting.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
MaxOutKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
Tensor
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
int
groups
=
context
.
template
Attr
<
int
>(
"groups"
);
int
axis
=
context
.
template
Attr
<
int
>(
"axis"
);
if
(
axis
<
0
)
{
axis
+=
in_x
->
dims
().
size
();
}
math
::
MaxOutFunctor
<
DeviceContext
,
T
>
maxout_forward
;
maxout_forward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
out
,
groups
,
axis
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
MaxOutGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
out
=
context
.
Input
<
Tensor
>
(
"Out"
);
const
Tensor
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
in_x_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
int
groups
=
context
.
template
Attr
<
int
>(
"groups"
);
int
axis
=
context
.
template
Attr
<
int
>(
"axis"
);
if
(
axis
<
0
)
{
axis
+=
in_x
->
dims
().
size
();
}
auto
&
device_ctx
=
context
.
template
device_context
<
DeviceContext
>();
phi
::
funcs
::
SetConstant
<
DeviceContext
,
T
>
zero
;
if
(
in_x_grad
)
{
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
zero
(
device_ctx
,
in_x_grad
,
static_cast
<
T
>
(
0.0
));
math
::
MaxOutGradFunctor
<
DeviceContext
,
T
>
maxout_backward
;
maxout_backward
(
device_ctx
,
*
in_x
,
in_x_grad
,
*
out
,
*
out_grad
,
groups
,
axis
);
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/put_along_axis_op.cc
浏览文件 @
48b4366c
...
...
@@ -12,10 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/put_along_axis_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/core/ddim.h"
...
...
@@ -123,16 +124,3 @@ REGISTER_OPERATOR(put_along_axis, ops::PutAlongAxisOp, ops::PutAlongAxisOpMaker,
paddle
::
operators
::
PutAlongAxisInplaceInferer
);
REGISTER_OPERATOR
(
put_along_axis_grad
,
ops
::
PutAlongAxisGradOp
);
REGISTER_OP_CPU_KERNEL
(
put_along_axis
,
ops
::
PutAlongAxisOpKernel
<
float
>
,
ops
::
PutAlongAxisOpKernel
<
double
>
,
ops
::
PutAlongAxisOpKernel
<
int
>
,
ops
::
PutAlongAxisOpKernel
<
uint8_t
>
,
ops
::
PutAlongAxisOpKernel
<
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
put_along_axis_grad
,
ops
::
PutAlongAxisGradOpKernel
<
float
>
,
ops
::
PutAlongAxisGradOpKernel
<
double
>
,
ops
::
PutAlongAxisGradOpKernel
<
int
>
,
ops
::
PutAlongAxisGradOpKernel
<
uint8_t
>
,
ops
::
PutAlongAxisGradOpKernel
<
int64_t
>
);
paddle/fluid/operators/put_along_axis_op.cu
已删除
100644 → 0
浏览文件 @
00566ead
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/put_along_axis_op.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
PutAlongAxisCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"PutAlongAxisCUDAKernel only runs on GPU device."
));
auto
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
axis
=
ctx
.
Attr
<
int
>
(
"Axis"
);
auto
value
=
ctx
.
Input
<
Tensor
>
(
"Value"
);
auto
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
reduce_op
=
ctx
.
Attr
<
std
::
string
>
(
"Reduce"
);
auto
result
=
ctx
.
Output
<
Tensor
>
(
"Result"
);
const
platform
::
DeviceContext
&
device_ctx
=
ctx
.
device_context
();
const
auto
&
index_type
=
framework
::
TransToProtoVarType
(
index
->
dtype
());
framework
::
TensorCopy
(
*
input
,
ctx
.
GetPlace
(),
result
);
if
(
reduce_op
==
"add"
)
{
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
gpu_scatter_add_kernel
<
T
,
int32_t
>
(
*
result
,
axis
,
*
index
,
*
value
,
device_ctx
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
gpu_scatter_add_kernel
<
T
,
int64_t
>
(
*
result
,
axis
,
*
index
,
*
value
,
device_ctx
);
}
}
else
if
(
reduce_op
==
"multiply"
||
reduce_op
==
"mul"
)
{
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
gpu_scatter_mul_kernel
<
T
,
int32_t
>
(
*
result
,
axis
,
*
index
,
*
value
,
device_ctx
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
gpu_scatter_mul_kernel
<
T
,
int64_t
>
(
*
result
,
axis
,
*
index
,
*
value
,
device_ctx
);
}
}
else
if
(
reduce_op
==
"assign"
)
{
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
gpu_scatter_assign_kernel
<
T
,
int32_t
>
(
*
result
,
axis
,
*
index
,
*
value
,
device_ctx
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
gpu_scatter_assign_kernel
<
T
,
int64_t
>
(
*
result
,
axis
,
*
index
,
*
value
,
device_ctx
);
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"can not support reduce_op: '%s' for scatter kernel, only "
"support reduce op: 'add‘, 'assign', 'mul' and 'multiply', the "
"defalut reduce op is 'assign' "
,
reduce_op
));
return
;
}
}
};
template
<
typename
T
>
class
PutAlongAxisGradOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"PutAlongAxisGradOpCUDAKernel only runs on GPU."
));
auto
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
value_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Value"
));
auto
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
result_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Result"
));
auto
axis
=
ctx
.
Attr
<
int
>
(
"Axis"
);
const
auto
&
index_type
=
framework
::
TransToProtoVarType
(
index
->
dtype
());
if
(
input_grad
)
{
framework
::
TensorCopy
(
*
result_grad
,
ctx
.
GetPlace
(),
input_grad
);
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
gpu_scatter_input_grad_kernel
<
T
,
int32_t
>
(
*
result_grad
,
axis
,
*
index
,
*
input_grad
,
ctx
.
device_context
());
}
else
{
gpu_scatter_input_grad_kernel
<
T
,
int64_t
>
(
*
result_grad
,
axis
,
*
index
,
*
input_grad
,
ctx
.
device_context
());
}
}
if
(
value_grad
)
{
value_grad
->
Resize
(
index
->
dims
());
value_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
gpu_gather_kernel
<
T
,
int32_t
>
(
*
result_grad
,
axis
,
*
index
,
*
value_grad
,
ctx
.
device_context
());
// the gradient of scatter is gather
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
gpu_gather_kernel
<
T
,
int64_t
>
(
*
result_grad
,
axis
,
*
index
,
*
value_grad
,
ctx
.
device_context
());
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
put_along_axis
,
ops
::
PutAlongAxisCUDAKernel
<
float
>
,
ops
::
PutAlongAxisCUDAKernel
<
double
>
,
ops
::
PutAlongAxisCUDAKernel
<
int64_t
>
,
ops
::
PutAlongAxisCUDAKernel
<
int
>
,
ops
::
PutAlongAxisCUDAKernel
<
plat
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
put_along_axis_grad
,
ops
::
PutAlongAxisGradOpCUDAKernel
<
float
>
,
ops
::
PutAlongAxisGradOpCUDAKernel
<
double
>
,
ops
::
PutAlongAxisGradOpCUDAKernel
<
int64_t
>
,
ops
::
PutAlongAxisGradOpCUDAKernel
<
int
>
,
ops
::
PutAlongAxisGradOpCUDAKernel
<
plat
::
float16
>
);
paddle/fluid/operators/put_along_axis_op.h
已删除
100644 → 0
浏览文件 @
00566ead
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/gather_scatter_kernel.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
PutAlongAxisOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"PutAlongAxisOpKernel only runs on CPU."
));
auto
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
axis
=
ctx
.
Attr
<
int
>
(
"Axis"
);
auto
value
=
ctx
.
Input
<
Tensor
>
(
"Value"
);
auto
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
reduce_op
=
ctx
.
Attr
<
std
::
string
>
(
"Reduce"
);
auto
result
=
ctx
.
Output
<
Tensor
>
(
"Result"
);
framework
::
TensorCopy
(
*
input
,
ctx
.
GetPlace
(),
result
);
const
platform
::
DeviceContext
&
device_ctx
=
ctx
.
device_context
();
const
auto
&
index_type
=
framework
::
TransToProtoVarType
(
index
->
dtype
());
if
(
reduce_op
==
"add"
)
{
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
cpu_scatter_add_kernel
<
T
,
int32_t
>
(
*
result
,
axis
,
*
index
,
*
value
,
device_ctx
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
cpu_scatter_add_kernel
<
T
,
int64_t
>
(
*
result
,
axis
,
*
index
,
*
value
,
device_ctx
);
}
}
else
if
(
reduce_op
==
"multiply"
||
reduce_op
==
"mul"
)
{
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
cpu_scatter_mul_kernel
<
T
,
int32_t
>
(
*
result
,
axis
,
*
index
,
*
value
,
device_ctx
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
cpu_scatter_mul_kernel
<
T
,
int64_t
>
(
*
result
,
axis
,
*
index
,
*
value
,
device_ctx
);
}
}
else
if
(
reduce_op
==
"assign"
)
{
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
cpu_scatter_assign_kernel
<
T
,
int32_t
>
(
*
result
,
axis
,
*
index
,
*
value
,
device_ctx
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
cpu_scatter_assign_kernel
<
T
,
int64_t
>
(
*
result
,
axis
,
*
index
,
*
value
,
device_ctx
);
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"can not support reduce_op: '%s' for scatter kernel, only "
"support reduce op: 'add‘, 'assign', 'mul' and 'multiply', the "
"defalut reduce "
"op is 'assign' "
,
reduce_op
));
return
;
}
}
};
template
<
typename
T
>
class
PutAlongAxisGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"PutAlongAxisGradOpKernel only runs on CPU."
));
auto
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
value_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Value"
));
auto
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
result_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Result"
));
auto
axis
=
ctx
.
Attr
<
int
>
(
"Axis"
);
const
auto
&
index_type
=
framework
::
TransToProtoVarType
(
index
->
dtype
());
if
(
input_grad
)
{
framework
::
TensorCopy
(
*
result_grad
,
ctx
.
GetPlace
(),
input_grad
);
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
cpu_scatter_input_grad_kernel
<
T
,
int32_t
>
(
// Here passing an unused argument *result_grad, because it's
// convenient to instantiate a bunch of template function with the
// same arguments list.
*
result_grad
,
axis
,
*
index
,
*
input_grad
,
ctx
.
device_context
());
}
else
{
cpu_scatter_input_grad_kernel
<
T
,
int64_t
>
(
*
result_grad
,
axis
,
*
index
,
*
input_grad
,
ctx
.
device_context
());
}
}
if
(
value_grad
)
{
value_grad
->
Resize
(
index
->
dims
());
value_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
cpu_gather_kernel
<
T
,
int32_t
>
(
*
result_grad
,
axis
,
*
index
,
*
value_grad
,
ctx
.
device_context
());
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
cpu_gather_kernel
<
T
,
int64_t
>
(
*
result_grad
,
axis
,
*
index
,
*
value_grad
,
ctx
.
device_context
());
}
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/take_along_axis_op.cc
浏览文件 @
48b4366c
...
...
@@ -12,10 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/take_along_axis_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/core/ddim.h"
...
...
@@ -139,16 +140,3 @@ REGISTER_OPERATOR(take_along_axis, ops::TakeAlongAxisOp,
ops
::
TakeAlongAxisGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
take_along_axis_grad
,
ops
::
TakeAlongAxisGradOp
);
REGISTER_OP_CPU_KERNEL
(
take_along_axis
,
ops
::
TakeAlongAxisOpKernel
<
float
>
,
ops
::
TakeAlongAxisOpKernel
<
double
>
,
ops
::
TakeAlongAxisOpKernel
<
int
>
,
ops
::
TakeAlongAxisOpKernel
<
uint8_t
>
,
ops
::
TakeAlongAxisOpKernel
<
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
take_along_axis_grad
,
ops
::
TakeAlongAxisGradOpKernel
<
float
>
,
ops
::
TakeAlongAxisGradOpKernel
<
double
>
,
ops
::
TakeAlongAxisGradOpKernel
<
int
>
,
ops
::
TakeAlongAxisGradOpKernel
<
uint8_t
>
,
ops
::
TakeAlongAxisGradOpKernel
<
int64_t
>
);
paddle/fluid/operators/take_along_axis_op.cu
已删除
100644 → 0
浏览文件 @
00566ead
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/take_along_axis_op.h"
#include "paddle/phi/core/ddim.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
TakeAlongAxisCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"This kernel only runs on GPU device."
));
auto
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
axis
=
ctx
.
Attr
<
int
>
(
"Axis"
);
auto
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
result
=
ctx
.
Output
<
Tensor
>
(
"Result"
);
result
->
Resize
(
index
->
dims
());
result
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
&
index_type
=
framework
::
TransToProtoVarType
(
index
->
dtype
());
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
gpu_gather_kernel
<
T
,
int32_t
>
(
*
input
,
axis
,
*
index
,
*
result
,
ctx
.
device_context
());
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
gpu_gather_kernel
<
T
,
int64_t
>
(
*
input
,
axis
,
*
index
,
*
result
,
ctx
.
device_context
());
}
}
};
template
<
typename
T
>
class
TakeAlongAxisGradOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"This kernel only runs on GPU."
));
auto
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
result_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Result"
));
auto
axis
=
ctx
.
Attr
<
int
>
(
"Axis"
);
// We need to know the shape of input matrix to determine the shape of grad
// matrix of input.
auto
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
input_grad
->
Resize
(
input
->
dims
());
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Set to zero tensor.
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
phi
::
funcs
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
functor
;
functor
(
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
dev_ctx
),
input_grad
,
static_cast
<
T
>
(
0
));
const
auto
&
index_type
=
framework
::
TransToProtoVarType
(
index
->
dtype
());
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
gpu_scatter_add_kernel
<
T
,
int32_t
>
(
*
input_grad
,
axis
,
*
index
,
*
result_grad
,
ctx
.
device_context
());
// the gradient of gather is scatter
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
gpu_scatter_add_kernel
<
T
,
int64_t
>
(
*
input_grad
,
axis
,
*
index
,
*
result_grad
,
ctx
.
device_context
());
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
take_along_axis
,
ops
::
TakeAlongAxisCUDAKernel
<
float
>
,
ops
::
TakeAlongAxisCUDAKernel
<
double
>
,
ops
::
TakeAlongAxisCUDAKernel
<
int64_t
>
,
ops
::
TakeAlongAxisCUDAKernel
<
int
>
,
ops
::
TakeAlongAxisCUDAKernel
<
plat
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
take_along_axis_grad
,
ops
::
TakeAlongAxisGradOpCUDAKernel
<
float
>
,
ops
::
TakeAlongAxisGradOpCUDAKernel
<
double
>
,
ops
::
TakeAlongAxisGradOpCUDAKernel
<
int64_t
>
,
ops
::
TakeAlongAxisGradOpCUDAKernel
<
int
>
,
ops
::
TakeAlongAxisGradOpCUDAKernel
<
plat
::
float16
>
);
paddle/fluid/operators/take_along_axis_op.h
已删除
100644 → 0
浏览文件 @
00566ead
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/gather_scatter_kernel.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
TakeAlongAxisOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"This kernel only runs on CPU."
));
auto
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
axis
=
ctx
.
Attr
<
int
>
(
"Axis"
);
auto
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
result
=
ctx
.
Output
<
Tensor
>
(
"Result"
);
result
->
Resize
(
index
->
dims
());
result
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
&
index_type
=
framework
::
TransToProtoVarType
(
index
->
dtype
());
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
cpu_gather_kernel
<
T
,
int32_t
>
(
*
input
,
axis
,
*
index
,
*
result
,
ctx
.
device_context
());
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
cpu_gather_kernel
<
T
,
int64_t
>
(
*
input
,
axis
,
*
index
,
*
result
,
ctx
.
device_context
());
}
}
};
template
<
typename
T
>
class
TakeAlongAxisGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"This kernel only runs on CPU."
));
auto
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
result_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Result"
));
auto
axis
=
ctx
.
Attr
<
int
>
(
"Axis"
);
// We need to know the shape of input matrix to determine the shape of grad
// matrix of input.
auto
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
input_grad
->
Resize
(
input
->
dims
());
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Set to zero tensor.
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
phi
::
funcs
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
functor
;
functor
(
reinterpret_cast
<
const
platform
::
CPUDeviceContext
&>
(
dev_ctx
),
input_grad
,
static_cast
<
T
>
(
0
));
const
auto
&
index_type
=
framework
::
TransToProtoVarType
(
index
->
dtype
());
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
cpu_scatter_add_kernel
<
T
,
int32_t
>
(
*
input_grad
,
axis
,
*
index
,
*
result_grad
,
ctx
.
device_context
());
// the gradient of gather is scatter
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
cpu_scatter_add_kernel
<
T
,
int64_t
>
(
*
input_grad
,
axis
,
*
index
,
*
result_grad
,
ctx
.
device_context
());
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/phi/kernels/CMakeLists.txt
浏览文件 @
48b4366c
...
...
@@ -27,11 +27,17 @@ kernel_library(full_kernel DEPS ${COMMON_KERNEL_DEPS} empty_kernel)
# Some kernels depend on some targets that are not commonly used.
# These targets are not suitable for common dependencies.
# In this case, you need to manually generate them here.
set
(
MANUAL_BUILD_KERNELS math_kernel softmax_kernel softmax_grad_kernel triangular_solve_grad_kernel
)
set
(
MANUAL_BUILD_KERNELS math_kernel softmax_kernel softmax_grad_kernel triangular_solve_grad_kernel
maxout_kernel maxout_grad_kernel put_along_axis_kernel put_along_axis_grad_kernel take_along_axis_kernel take_along_axis_grad_kernel
)
kernel_library
(
math_kernel DEPS
${
COMMON_KERNEL_DEPS
}
cast_kernel copy_kernel
)
kernel_library
(
softmax_kernel DEPS
${
COMMON_KERNEL_DEPS
}
softmax
)
kernel_library
(
softmax_grad_kernel DEPS
${
COMMON_KERNEL_DEPS
}
softmax
)
kernel_library
(
triangular_solve_grad_kernel DEPS
${
COMMON_KERNEL_DEPS
}
matrix_reduce
)
kernel_library
(
maxout_kernel DEPS
${
COMMON_KERNEL_DEPS
}
maxouting
)
kernel_library
(
maxout_grad_kernel DEPS
${
COMMON_KERNEL_DEPS
}
maxouting
)
kernel_library
(
put_along_axis_kernel DEPS
${
COMMON_KERNEL_DEPS
}
gather_scatter_kernel
)
kernel_library
(
put_along_axis_grad_kernel DEPS
${
COMMON_KERNEL_DEPS
}
gather_scatter_kernel
)
kernel_library
(
take_along_axis_kernel DEPS
${
COMMON_KERNEL_DEPS
}
gather_scatter_kernel
)
kernel_library
(
take_along_axis_grad_kernel DEPS
${
COMMON_KERNEL_DEPS
}
gather_scatter_kernel
)
# 4. auto parse and build kernel targets by cmake
register_kernels
(
EXCLUDES
${
COMMON_BAISC_KERNELS
}
${
MANUAL_BUILD_KERNELS
}
DEPS
${
COMMON_KERNEL_DEPS
}
${
COMMON_BAISC_KERNELS
}
)
...
...
paddle/phi/kernels/cpu/maxout_grad_kernel.cc
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/impl/maxout_grad_kernel_impl.h"
#include "paddle/phi/core/kernel_registry.h"
PD_REGISTER_KERNEL
(
maxout_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
MaxOutGradKernel
,
float
,
double
)
{}
paddle/phi/kernels/cpu/maxout_kernel.cc
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/impl/maxout_kernel_impl.h"
#include "paddle/phi/core/kernel_registry.h"
PD_REGISTER_KERNEL
(
maxout
,
CPU
,
ALL_LAYOUT
,
phi
::
MaxOutKernel
,
float
,
double
)
{}
paddle/phi/kernels/cpu/put_along_axis_grad_kernel.cc
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/put_along_axis_grad_kernel.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/operators/gather_scatter_kernel.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PutAlongAxisGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
index
,
const
DenseTensor
&
out_grad
,
int
axis
,
const
std
::
string
&
reduce
,
DenseTensor
*
x_grad
,
DenseTensor
*
value_grad
)
{
PADDLE_ENFORCE_EQ
(
paddle
::
platform
::
is_cpu_place
(
dev_ctx
.
GetPlace
()),
true
,
errors
::
PreconditionNotMet
(
"PutAlongAxisGradOpKernel only runs on CPU."
));
const
auto
&
index_type
=
paddle
::
framework
::
TransToProtoVarType
(
index
.
dtype
());
if
(
x_grad
)
{
phi
::
Copy
(
dev_ctx
,
out_grad
,
dev_ctx
.
GetPlace
(),
false
,
x_grad
);
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
paddle
::
operators
::
cpu_scatter_input_grad_kernel
<
T
,
int32_t
>
(
// Here passing an unused argument out_grad, because it's
// convenient to instantiate a bunch of template function with the
// same arguments list.
out_grad
,
axis
,
index
,
*
x_grad
,
dev_ctx
);
}
else
{
paddle
::
operators
::
cpu_scatter_input_grad_kernel
<
T
,
int64_t
>
(
out_grad
,
axis
,
index
,
*
x_grad
,
dev_ctx
);
}
}
if
(
value_grad
)
{
value_grad
->
Resize
(
index
.
dims
());
value_grad
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
paddle
::
operators
::
cpu_gather_kernel
<
T
,
int32_t
>
(
out_grad
,
axis
,
index
,
*
value_grad
,
dev_ctx
);
}
else
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT64
)
{
paddle
::
operators
::
cpu_gather_kernel
<
T
,
int64_t
>
(
out_grad
,
axis
,
index
,
*
value_grad
,
dev_ctx
);
}
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
put_along_axis_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
PutAlongAxisGradKernel
,
float
,
double
,
int
,
uint8_t
,
int64_t
)
{}
paddle/phi/kernels/cpu/put_along_axis_kernel.cc
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/put_along_axis_kernel.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/operators/gather_scatter_kernel.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PutAlongAxisKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
index
,
const
DenseTensor
&
value
,
int
axis
,
const
std
::
string
&
reduce
,
DenseTensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
paddle
::
platform
::
is_cpu_place
(
dev_ctx
.
GetPlace
()),
true
,
errors
::
PreconditionNotMet
(
"PutAlongAxisOpKernel only runs on CPU."
));
phi
::
Copy
(
dev_ctx
,
x
,
dev_ctx
.
GetPlace
(),
false
,
out
);
const
auto
&
index_type
=
paddle
::
framework
::
TransToProtoVarType
(
index
.
dtype
());
if
(
reduce
==
"add"
)
{
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
paddle
::
operators
::
cpu_scatter_add_kernel
<
T
,
int32_t
>
(
*
out
,
axis
,
index
,
value
,
dev_ctx
);
}
else
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT64
)
{
paddle
::
operators
::
cpu_scatter_add_kernel
<
T
,
int64_t
>
(
*
out
,
axis
,
index
,
value
,
dev_ctx
);
}
}
else
if
(
reduce
==
"multiply"
||
reduce
==
"mul"
)
{
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
paddle
::
operators
::
cpu_scatter_mul_kernel
<
T
,
int32_t
>
(
*
out
,
axis
,
index
,
value
,
dev_ctx
);
}
else
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT64
)
{
paddle
::
operators
::
cpu_scatter_mul_kernel
<
T
,
int64_t
>
(
*
out
,
axis
,
index
,
value
,
dev_ctx
);
}
}
else
if
(
reduce
==
"assign"
)
{
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
paddle
::
operators
::
cpu_scatter_assign_kernel
<
T
,
int32_t
>
(
*
out
,
axis
,
index
,
value
,
dev_ctx
);
}
else
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT64
)
{
paddle
::
operators
::
cpu_scatter_assign_kernel
<
T
,
int64_t
>
(
*
out
,
axis
,
index
,
value
,
dev_ctx
);
}
}
else
{
PADDLE_THROW
(
errors
::
InvalidArgument
(
"can not support reduce: '%s' for scatter kernel, only "
"support reduce op: 'add', 'assign', 'mul' and 'multiply', the "
"defalut reduce "
"op is 'assign' "
,
reduce
));
return
;
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
put_along_axis
,
CPU
,
ALL_LAYOUT
,
phi
::
PutAlongAxisKernel
,
float
,
double
,
int
,
uint8_t
,
int64_t
)
{}
paddle/phi/kernels/cpu/take_along_axis_grad_kernel.cc
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/take_along_axis_grad_kernel.h"
#include "paddle/fluid/operators/gather_scatter_kernel.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
TakeAlongAxisGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
index
,
const
DenseTensor
&
out_grad
,
int
axis
,
DenseTensor
*
x_grad
)
{
PADDLE_ENFORCE_EQ
(
paddle
::
platform
::
is_cpu_place
(
dev_ctx
.
GetPlace
()),
true
,
errors
::
PreconditionNotMet
(
"This kernel only runs on CPU."
));
// We need to know the shape of input matrix to determine the shape of grad
// matrix of input.
x_grad
->
Resize
(
x
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
x_grad
);
// Set to zero tensor.
phi
::
funcs
::
SetConstant
<
Context
,
T
>
functor
;
functor
(
dev_ctx
,
x_grad
,
static_cast
<
T
>
(
0
));
const
auto
&
index_type
=
paddle
::
framework
::
TransToProtoVarType
(
index
.
dtype
());
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
paddle
::
operators
::
cpu_scatter_add_kernel
<
T
,
int32_t
>
(
*
x_grad
,
axis
,
index
,
out_grad
,
dev_ctx
);
// the gradient of gather is scatter
}
else
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT64
)
{
paddle
::
operators
::
cpu_scatter_add_kernel
<
T
,
int64_t
>
(
*
x_grad
,
axis
,
index
,
out_grad
,
dev_ctx
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
take_along_axis_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
TakeAlongAxisGradKernel
,
float
,
double
,
int
,
uint8_t
,
int64_t
)
{}
paddle/phi/kernels/cpu/take_along_axis_kernel.cc
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/take_along_axis_kernel.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/operators/gather_scatter_kernel.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
TakeAlongAxisKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
index
,
int
axis
,
DenseTensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
paddle
::
platform
::
is_cpu_place
(
dev_ctx
.
GetPlace
()),
true
,
errors
::
PreconditionNotMet
(
"This kernel only runs on CPU."
));
out
->
Resize
(
index
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
out
);
const
auto
&
index_type
=
paddle
::
framework
::
TransToProtoVarType
(
index
.
dtype
());
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
paddle
::
operators
::
cpu_gather_kernel
<
T
,
int32_t
>
(
x
,
axis
,
index
,
*
out
,
dev_ctx
);
}
else
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT64
)
{
paddle
::
operators
::
cpu_gather_kernel
<
T
,
int64_t
>
(
x
,
axis
,
index
,
*
out
,
dev_ctx
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
take_along_axis
,
CPU
,
ALL_LAYOUT
,
phi
::
TakeAlongAxisKernel
,
float
,
double
,
int
,
uint8_t
,
int64_t
)
{}
paddle/phi/kernels/gpu/maxout_grad_kernel.cu
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/impl/maxout_grad_kernel_impl.h"
#include "paddle/phi/core/kernel_registry.h"
PD_REGISTER_KERNEL
(
maxout_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
MaxOutGradKernel
,
float
,
double
)
{}
paddle/phi/kernels/gpu/maxout_kernel.cu
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/impl/maxout_kernel_impl.h"
#include "paddle/phi/core/kernel_registry.h"
PD_REGISTER_KERNEL
(
maxout
,
GPU
,
ALL_LAYOUT
,
phi
::
MaxOutKernel
,
float
,
double
)
{}
paddle/phi/kernels/gpu/put_along_axis_grad_kernel.cu
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/put_along_axis_grad_kernel.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/operators/gather_scatter_kernel.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PutAlongAxisGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
index
,
const
DenseTensor
&
out_grad
,
int
axis
,
const
std
::
string
&
reduce
,
DenseTensor
*
x_grad
,
DenseTensor
*
value_grad
)
{
PADDLE_ENFORCE_EQ
(
paddle
::
platform
::
is_gpu_place
(
dev_ctx
.
GetPlace
()),
true
,
errors
::
PreconditionNotMet
(
"PutAlongAxisGradOpCUDAKernel only runs on GPU."
));
const
auto
&
index_type
=
paddle
::
framework
::
TransToProtoVarType
(
index
.
dtype
());
if
(
x_grad
)
{
phi
::
Copy
(
dev_ctx
,
out_grad
,
dev_ctx
.
GetPlace
(),
false
,
x_grad
);
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
paddle
::
operators
::
gpu_scatter_input_grad_kernel
<
T
,
int32_t
>
(
out_grad
,
axis
,
index
,
*
x_grad
,
dev_ctx
);
}
else
{
paddle
::
operators
::
gpu_scatter_input_grad_kernel
<
T
,
int64_t
>
(
out_grad
,
axis
,
index
,
*
x_grad
,
dev_ctx
);
}
}
if
(
value_grad
)
{
value_grad
->
Resize
(
index
.
dims
());
value_grad
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
paddle
::
operators
::
gpu_gather_kernel
<
T
,
int32_t
>
(
out_grad
,
axis
,
index
,
*
value_grad
,
dev_ctx
);
// the gradient of scatter is gather
}
else
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT64
)
{
paddle
::
operators
::
gpu_gather_kernel
<
T
,
int64_t
>
(
out_grad
,
axis
,
index
,
*
value_grad
,
dev_ctx
);
}
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
put_along_axis_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
PutAlongAxisGradKernel
,
float
,
double
,
int64_t
,
int
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/gpu/put_along_axis_kernel.cu
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/put_along_axis_kernel.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/operators/gather_scatter_kernel.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PutAlongAxisKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
index
,
const
DenseTensor
&
value
,
int
axis
,
const
std
::
string
&
reduce
,
DenseTensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
paddle
::
platform
::
is_gpu_place
(
dev_ctx
.
GetPlace
()),
true
,
errors
::
PreconditionNotMet
(
"PutAlongAxisCUDAKernel only runs on GPU device."
));
const
auto
&
index_type
=
paddle
::
framework
::
TransToProtoVarType
(
index
.
dtype
());
phi
::
Copy
(
dev_ctx
,
x
,
dev_ctx
.
GetPlace
(),
false
,
out
);
if
(
reduce
==
"add"
)
{
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
paddle
::
operators
::
gpu_scatter_add_kernel
<
T
,
int32_t
>
(
*
out
,
axis
,
index
,
value
,
dev_ctx
);
}
else
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT64
)
{
paddle
::
operators
::
gpu_scatter_add_kernel
<
T
,
int64_t
>
(
*
out
,
axis
,
index
,
value
,
dev_ctx
);
}
}
else
if
(
reduce
==
"multiply"
||
reduce
==
"mul"
)
{
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
paddle
::
operators
::
gpu_scatter_mul_kernel
<
T
,
int32_t
>
(
*
out
,
axis
,
index
,
value
,
dev_ctx
);
}
else
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT64
)
{
paddle
::
operators
::
gpu_scatter_mul_kernel
<
T
,
int64_t
>
(
*
out
,
axis
,
index
,
value
,
dev_ctx
);
}
}
else
if
(
reduce
==
"assign"
)
{
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
paddle
::
operators
::
gpu_scatter_assign_kernel
<
T
,
int32_t
>
(
*
out
,
axis
,
index
,
value
,
dev_ctx
);
}
else
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT64
)
{
paddle
::
operators
::
gpu_scatter_assign_kernel
<
T
,
int64_t
>
(
*
out
,
axis
,
index
,
value
,
dev_ctx
);
}
}
else
{
PADDLE_THROW
(
errors
::
InvalidArgument
(
"can not support reduce: '%s' for scatter kernel, only "
"support reduce op: 'add', 'assign', 'mul' and 'multiply', the "
"defalut reduce op is 'assign' "
,
reduce
));
return
;
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
put_along_axis
,
GPU
,
ALL_LAYOUT
,
phi
::
PutAlongAxisKernel
,
float
,
double
,
int64_t
,
int
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/gpu/take_along_axis_grad_kernel.cu
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/take_along_axis_grad_kernel.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/operators/gather_scatter_kernel.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
TakeAlongAxisGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
index
,
const
DenseTensor
&
out_grad
,
int
axis
,
DenseTensor
*
x_grad
)
{
PADDLE_ENFORCE_EQ
(
paddle
::
platform
::
is_gpu_place
(
dev_ctx
.
GetPlace
()),
true
,
errors
::
PreconditionNotMet
(
"This kernel only runs on GPU."
));
// We need to know the shape of input matrix to determine the shape of grad
// matrix of input.
x_grad
->
Resize
(
x
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
x_grad
);
// Set to zero tensor.
phi
::
funcs
::
SetConstant
<
Context
,
T
>
functor
;
functor
(
dev_ctx
,
x_grad
,
static_cast
<
T
>
(
0
));
const
auto
&
index_type
=
paddle
::
framework
::
TransToProtoVarType
(
index
.
dtype
());
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
paddle
::
operators
::
gpu_scatter_add_kernel
<
T
,
int32_t
>
(
*
x_grad
,
axis
,
index
,
out_grad
,
dev_ctx
);
// the gradient of gather is scatter
}
else
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT64
)
{
paddle
::
operators
::
gpu_scatter_add_kernel
<
T
,
int64_t
>
(
*
x_grad
,
axis
,
index
,
out_grad
,
dev_ctx
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
take_along_axis_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
TakeAlongAxisGradKernel
,
float
,
double
,
int64_t
,
int
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/gpu/take_along_axis_kernel.cu
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/take_along_axis_kernel.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/operators/gather_scatter_kernel.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
TakeAlongAxisKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
index
,
int
axis
,
DenseTensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
paddle
::
platform
::
is_gpu_place
(
dev_ctx
.
GetPlace
()),
true
,
errors
::
PreconditionNotMet
(
"This kernel only runs on GPU device."
));
out
->
Resize
(
index
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
out
);
const
auto
&
index_type
=
paddle
::
framework
::
TransToProtoVarType
(
index
.
dtype
());
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
paddle
::
operators
::
gpu_gather_kernel
<
T
,
int32_t
>
(
x
,
axis
,
index
,
*
out
,
dev_ctx
);
}
else
if
(
index_type
==
paddle
::
framework
::
proto
::
VarType
::
INT64
)
{
paddle
::
operators
::
gpu_gather_kernel
<
T
,
int64_t
>
(
x
,
axis
,
index
,
*
out
,
dev_ctx
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
take_along_axis
,
GPU
,
ALL_LAYOUT
,
phi
::
TakeAlongAxisKernel
,
double
,
int64_t
,
int
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/impl/maxout_grad_kernel_impl.h
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/kernels/maxout_grad_kernel.h"
#include "paddle/fluid/operators/math/maxouting.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
MaxOutGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
int
groups
,
int
axis
,
DenseTensor
*
x_grad
)
{
if
(
axis
<
0
)
{
axis
+=
x
.
dims
().
size
();
}
phi
::
funcs
::
SetConstant
<
Context
,
T
>
zero
;
if
(
x_grad
)
{
dev_ctx
.
template
Alloc
<
T
>(
x_grad
);
zero
(
dev_ctx
,
x_grad
,
static_cast
<
T
>
(
0.0
));
paddle
::
operators
::
math
::
MaxOutGradFunctor
<
Context
,
T
>
maxout_backward
;
maxout_backward
(
dev_ctx
,
x
,
x_grad
,
out
,
out_grad
,
groups
,
axis
);
}
}
}
// namespace phi
paddle/phi/kernels/impl/maxout_kernel_impl.h
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/kernels/maxout_kernel.h"
#include "paddle/fluid/operators/math/maxouting.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
MaxOutKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
int
groups
,
int
axis
,
DenseTensor
*
out
)
{
if
(
axis
<
0
)
{
axis
+=
x
.
dims
().
size
();
}
paddle
::
operators
::
math
::
MaxOutFunctor
<
Context
,
T
>
maxout_forward
;
maxout_forward
(
dev_ctx
,
x
,
out
,
groups
,
axis
);
}
}
// namespace phi
paddle/phi/kernels/maxout_grad_kernel.h
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
MaxOutGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
int
groups
,
int
axis
,
DenseTensor
*
x_grad
);
}
// namespace phi
paddle/phi/kernels/maxout_kernel.h
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
MaxOutKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
int
groups
,
int
axis
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/kernels/put_along_axis_grad_kernel.h
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PutAlongAxisGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
index
,
const
DenseTensor
&
out_grad
,
int
axis
,
const
std
::
string
&
reduce
,
DenseTensor
*
x_grad
,
DenseTensor
*
value_grad
);
}
// namespace phi
paddle/phi/kernels/put_along_axis_kernel.h
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PutAlongAxisKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
index
,
const
DenseTensor
&
value
,
int
axis
,
const
std
::
string
&
reduce
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/kernels/take_along_axis_grad_kernel.h
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
TakeAlongAxisGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
index
,
const
DenseTensor
&
out_grad
,
int
axis
,
DenseTensor
*
x_grad
);
}
// namespace phi
paddle/phi/kernels/take_along_axis_kernel.h
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
TakeAlongAxisKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
index
,
int
axis
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/ops/compat/maxout_sig.cc
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
MaxoutArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"maxout"
,
{
"X"
},
{
"groups"
,
"axis"
},
{
"Out"
});
}
KernelSignature
MaxoutGradArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"maxout_grad"
,
{
"X"
,
"Out"
,
GradVarName
(
"Out"
)},
{
"groups"
,
"axis"
},
{
GradVarName
(
"X"
)});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
maxout
,
phi
::
MaxoutArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
maxout_grad
,
phi
::
MaxoutGradArgumentMapping
);
paddle/phi/ops/compat/put_along_axis_sig.cc
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
PutAlongAxisArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"put_along_axis"
,
{
"Input"
,
"Index"
,
"Value"
},
{
"Axis"
,
"Reduce"
},
{
"Result"
});
}
KernelSignature
PutAlongAxisGradArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"put_along_axis_grad"
,
{
"Input"
,
"Index"
,
GradVarName
(
"Result"
)},
{
"Axis"
,
"Reduce"
},
{
GradVarName
(
"Input"
),
GradVarName
(
"Value"
)});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
put_along_axis
,
phi
::
PutAlongAxisArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
put_along_axis_grad
,
phi
::
PutAlongAxisGradArgumentMapping
);
paddle/phi/ops/compat/take_along_axis_sig.cc
0 → 100644
浏览文件 @
48b4366c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
TakeAlongAxisArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"take_along_axis"
,
{
"Input"
,
"Index"
},
{
"Axis"
},
{
"Result"
});
}
KernelSignature
TakeAlongAxisGradArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"take_along_axis_grad"
,
{
"Input"
,
"Index"
,
GradVarName
(
"Result"
)},
{
"Axis"
},
{
GradVarName
(
"Input"
)});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
take_along_axis
,
phi
::
TakeAlongAxisArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
take_along_axis_grad
,
phi
::
TakeAlongAxisGradArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录