index_en.html 28.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Generative Adversarial Networks (GAN) &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
65
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a></li>
87
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_en.html">MOBILE</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
111 112 113 114
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/dev/build_en.html">Build using Docker</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/build_from_source_en.html">Build from Sources</a></li>
115 116 117 118 119 120 121 122 123 124 125
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
126
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html">PaddlePaddle Distributed Training</a></li>
127 128 129 130
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
131 132 133 134 135
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/write_docs_en.html">Contribute Documentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
136 137 138 139 140 141 142
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
143
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
144 145 146 147 148 149
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
150 151 152 153 154 155
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
156
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/fluid.html">Fluid</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/layers.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/data_feeder.html">DataFeeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/executor.html">Executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/initializer.html">Initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/evaluator.html">Evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/nets.html">Nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/param_attr.html">ParamAttr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/profiler.html">Profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/regularizer.html">Regularizer</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_en.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_android_en.html">Build PaddlePaddle for Android</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_raspberry_en.html">Build PaddlePaddle for Raspberry Pi</a></li>
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Generative Adversarial Networks (GAN)</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="generative-adversarial-networks-gan">
<span id="generative-adversarial-networks-gan"></span><h1>Generative Adversarial Networks (GAN)<a class="headerlink" href="#generative-adversarial-networks-gan" title="Permalink to this headline"></a></h1>
<p>This demo implements GAN training described in the original <a class="reference external" href="https://arxiv.org/abs/1406.2661">GAN paper</a> and deep convolutional generative adversarial networks <a class="reference external" href="https://arxiv.org/abs/1511.06434">DCGAN paper</a>.</p>
<p>The high-level structure of GAN is shown in Figure. 1 below. It is composed of two major parts: a generator and a discriminator, both of which are based on neural networks. The generator takes in some kind of noise with a known distribution and transforms it into an image. The discriminator takes in an image and determines whether it is artificially generated by the generator or a real image. So the generator and the discriminator are in a competitive game in which generator is trying to generate image to look as real as possible to fool the discriminator, while the discriminator is trying to distinguish between real and fake images.</p>
<p><center><img alt="" src="../../_images/gan.png" /></center></p>
<p align="center">
    Figure 1. GAN-Model-Structure
    <a href="https://ishmaelbelghazi.github.io/ALI/">figure credit</a>
</p><p>The generator and discriminator take turn to be trained using SGD. The objective function of the generator is for its generated images being classified as real by the discriminator, and the objective function of the discriminator is to correctly classify real and fake images. When the GAN model is trained to converge to the equilibrium state, the generator will transform the given noise distribution to the distribution of real images, and the discriminator will not be able to distinguish between real and fake images at all.</p>
<div class="section" id="implementation-of-gan-model-structure">
<span id="implementation-of-gan-model-structure"></span><h2>Implementation of GAN Model Structure<a class="headerlink" href="#implementation-of-gan-model-structure" title="Permalink to this headline"></a></h2>
<p>Since GAN model involves multiple neural networks, it requires to use paddle python API. So the code walk-through below can also partially serve as an introduction to the usage of Paddle Python API.</p>
<p>There are three networks defined in gan_conf.py, namely <strong>generator_training</strong>, <strong>discriminator_training</strong> and <strong>generator</strong>. The relationship to the model structure we defined above is that <strong>discriminator_training</strong> is the discriminator, <strong>generator</strong> is the generator, and the <strong>generator_training</strong> combined the generator and discriminator since training generator would require the discriminator to provide loss function. This relationship is described in the following code:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">if</span> <span class="n">is_generator_training</span><span class="p">:</span>
    <span class="n">noise</span> <span class="o">=</span> <span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;noise&quot;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">noise_dim</span><span class="p">)</span>
    <span class="n">sample</span> <span class="o">=</span> <span class="n">generator</span><span class="p">(</span><span class="n">noise</span><span class="p">)</span>

<span class="k">if</span> <span class="n">is_discriminator_training</span><span class="p">:</span>
    <span class="n">sample</span> <span class="o">=</span> <span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;sample&quot;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">sample_dim</span><span class="p">)</span>

<span class="k">if</span> <span class="n">is_generator_training</span> <span class="ow">or</span> <span class="n">is_discriminator_training</span><span class="p">:</span>
    <span class="n">label</span> <span class="o">=</span> <span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;label&quot;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="n">prob</span> <span class="o">=</span> <span class="n">discriminator</span><span class="p">(</span><span class="n">sample</span><span class="p">)</span>
    <span class="n">cost</span> <span class="o">=</span> <span class="n">cross_entropy</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">prob</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">)</span>
    <span class="n">classification_error_evaluator</span><span class="p">(</span>
        <span class="nb">input</span><span class="o">=</span><span class="n">prob</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">mode</span> <span class="o">+</span> <span class="s1">&#39;_error&#39;</span><span class="p">)</span>
    <span class="n">outputs</span><span class="p">(</span><span class="n">cost</span><span class="p">)</span>

<span class="k">if</span> <span class="n">is_generator</span><span class="p">:</span>
    <span class="n">noise</span> <span class="o">=</span> <span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;noise&quot;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">noise_dim</span><span class="p">)</span>
    <span class="n">outputs</span><span class="p">(</span><span class="n">generator</span><span class="p">(</span><span class="n">noise</span><span class="p">))</span>
</pre></div>
</div>
<p>In order to train the networks defined in gan_conf.py, one first needs to initialize a Paddle environment, parse the config, create GradientMachine from the config and create trainer from GradientMachine as done in the code chunk below:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">py_paddle.swig_paddle</span> <span class="kn">as</span> <span class="nn">api</span>
<span class="c1"># init paddle environment</span>
<span class="n">api</span><span class="o">.</span><span class="n">initPaddle</span><span class="p">(</span><span class="s1">&#39;--use_gpu=&#39;</span> <span class="o">+</span> <span class="n">use_gpu</span><span class="p">,</span> <span class="s1">&#39;--dot_period=10&#39;</span><span class="p">,</span>
               <span class="s1">&#39;--log_period=100&#39;</span><span class="p">,</span> <span class="s1">&#39;--gpu_id=&#39;</span> <span class="o">+</span> <span class="n">args</span><span class="o">.</span><span class="n">gpu_id</span><span class="p">,</span>
               <span class="s1">&#39;--save_dir=&#39;</span> <span class="o">+</span> <span class="s2">&quot;./</span><span class="si">%s</span><span class="s2">_params/&quot;</span> <span class="o">%</span> <span class="n">data_source</span><span class="p">)</span>

<span class="c1"># Parse config</span>
<span class="n">gen_conf</span> <span class="o">=</span> <span class="n">parse_config</span><span class="p">(</span><span class="n">conf</span><span class="p">,</span> <span class="s2">&quot;mode=generator_training,data=&quot;</span> <span class="o">+</span> <span class="n">data_source</span><span class="p">)</span>
<span class="n">dis_conf</span> <span class="o">=</span> <span class="n">parse_config</span><span class="p">(</span><span class="n">conf</span><span class="p">,</span> <span class="s2">&quot;mode=discriminator_training,data=&quot;</span> <span class="o">+</span> <span class="n">data_source</span><span class="p">)</span>
<span class="n">generator_conf</span> <span class="o">=</span> <span class="n">parse_config</span><span class="p">(</span><span class="n">conf</span><span class="p">,</span> <span class="s2">&quot;mode=generator,data=&quot;</span> <span class="o">+</span> <span class="n">data_source</span><span class="p">)</span>

<span class="c1"># Create GradientMachine</span>
<span class="n">dis_training_machine</span> <span class="o">=</span> <span class="n">api</span><span class="o">.</span><span class="n">GradientMachine</span><span class="o">.</span><span class="n">createFromConfigProto</span><span class="p">(</span>
<span class="n">dis_conf</span><span class="o">.</span><span class="n">model_config</span><span class="p">)</span>
<span class="n">gen_training_machine</span> <span class="o">=</span> <span class="n">api</span><span class="o">.</span><span class="n">GradientMachine</span><span class="o">.</span><span class="n">createFromConfigProto</span><span class="p">(</span>
<span class="n">gen_conf</span><span class="o">.</span><span class="n">model_config</span><span class="p">)</span>
<span class="n">generator_machine</span> <span class="o">=</span> <span class="n">api</span><span class="o">.</span><span class="n">GradientMachine</span><span class="o">.</span><span class="n">createFromConfigProto</span><span class="p">(</span>
<span class="n">generator_conf</span><span class="o">.</span><span class="n">model_config</span><span class="p">)</span>

<span class="c1"># Create trainer</span>
<span class="n">dis_trainer</span> <span class="o">=</span> <span class="n">api</span><span class="o">.</span><span class="n">Trainer</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">dis_conf</span><span class="p">,</span> <span class="n">dis_training_machine</span><span class="p">)</span>
<span class="n">gen_trainer</span> <span class="o">=</span> <span class="n">api</span><span class="o">.</span><span class="n">Trainer</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">gen_conf</span><span class="p">,</span> <span class="n">gen_training_machine</span><span class="p">)</span>
</pre></div>
</div>
<p>In order to balance the strength between generator and discriminator, we schedule to train whichever one is performing worse by comparing their loss function value. The loss function value can be calculated by a forward pass through the GradientMachine.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">get_training_loss</span><span class="p">(</span><span class="n">training_machine</span><span class="p">,</span> <span class="n">inputs</span><span class="p">):</span>
    <span class="n">outputs</span> <span class="o">=</span> <span class="n">api</span><span class="o">.</span><span class="n">Arguments</span><span class="o">.</span><span class="n">createArguments</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
    <span class="n">training_machine</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">api</span><span class="o">.</span><span class="n">PASS_TEST</span><span class="p">)</span>
    <span class="n">loss</span> <span class="o">=</span> <span class="n">outputs</span><span class="o">.</span><span class="n">getSlotValue</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">copyToNumpyMat</span><span class="p">()</span>
    <span class="k">return</span> <span class="n">numpy</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">loss</span><span class="p">)</span>
</pre></div>
</div>
<p>After training one network, one needs to sync the new parameters to the other networks. The code below demonstrates one example of such use case:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># Train the gen_training</span>
<span class="n">gen_trainer</span><span class="o">.</span><span class="n">trainOneDataBatch</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">data_batch_gen</span><span class="p">)</span>

<span class="c1"># Copy the parameters from gen_training to dis_training and generator</span>
<span class="n">copy_shared_parameters</span><span class="p">(</span><span class="n">gen_training_machine</span><span class="p">,</span>
<span class="n">dis_training_machine</span><span class="p">)</span>
<span class="n">copy_shared_parameters</span><span class="p">(</span><span class="n">gen_training_machine</span><span class="p">,</span> <span class="n">generator_machine</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="a-toy-example">
<span id="a-toy-example"></span><h2>A Toy Example<a class="headerlink" href="#a-toy-example" title="Permalink to this headline"></a></h2>
<p>With the infrastructure explained above, we can now walk you through a toy example of generating two dimensional uniform distribution using 10 dimensional Gaussian noise.</p>
<p>The Gaussian noises are generated using the code below:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">get_noise</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">noise_dim</span><span class="p">):</span>
    <span class="k">return</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">noise_dim</span><span class="p">))</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>The real samples (2-D uniform) are generated using the code below:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># synthesize 2-D uniform data in gan_trainer.py:114</span>
<span class="k">def</span> <span class="nf">load_uniform_data</span><span class="p">():</span>
    <span class="n">data</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">1000000</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">data</span>
</pre></div>
</div>
<p>The generator and discriminator network are built using fully-connected layer and batch_norm layer, and are defined in gan_conf.py.</p>
<p>To train the GAN model, one can use the command below. The flag -d specifies the training data (cifar, mnist or uniform) and flag &#8211;useGpu specifies whether to use gpu for training (0 is cpu, 1 is gpu).</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">$python</span> gan_trainer.py -d uniform --useGpu <span class="m">1</span>
</pre></div>
</div>
<p>The generated samples can be found in ./uniform_samples/ and one example is shown below as Figure 2. One can see that it roughly recovers the 2D uniform distribution.</p>
<p><center><img alt="" src="../../_images/uniform_sample.png" /></center></p>
<p align="center">
    Figure 2. Uniform Sample
</p></div>
<div class="section" id="mnist-example">
<span id="mnist-example"></span><h2>MNIST Example<a class="headerlink" href="#mnist-example" title="Permalink to this headline"></a></h2>
<div class="section" id="data-preparation">
<span id="data-preparation"></span><h3>Data preparation<a class="headerlink" href="#data-preparation" title="Permalink to this headline"></a></h3>
<p>To download the MNIST data, one can use the following commands:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">$cd</span> data/
$./get_mnist_data.sh
</pre></div>
</div>
</div>
<div class="section" id="model-description">
<span id="model-description"></span><h3>Model description<a class="headerlink" href="#model-description" title="Permalink to this headline"></a></h3>
<p>Following the DC-Gan paper (https://arxiv.org/abs/1511.06434), we use convolution/convolution-transpose layer in the discriminator/generator network to better deal with images. The details of the network structures are defined in gan_conf_image.py.</p>
</div>
<div class="section" id="training-the-model">
<span id="training-the-model"></span><h3>Training the model<a class="headerlink" href="#training-the-model" title="Permalink to this headline"></a></h3>
<p>To train the GAN model on mnist data, one can use the following command:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">$python</span> gan_trainer.py -d mnist --useGpu <span class="m">1</span>
</pre></div>
</div>
<p>The generated sample images can be found at ./mnist_samples/ and one example is shown below as Figure 3.
<center><img alt="" src="../../_images/mnist_sample.png" /></center></p>
<p align="center">
    Figure 3. MNIST Sample
</p></div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>