cluster_train_en.md.txt 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
# PaddlePaddle Distributed Training

* [Introduction](#introduction)
* [Preparations](#preparations)
* [Command-line arguments](#command-line-arguments)
   * [Starting parameter server](#starting-parameter-server)
   * [Starting trainer](#starting-trainer)
   * [Prepare Training Dataset](#prepare-training-dataset)
   * [Prepare Training program](#prepare-training-program)
* [Use cluster platforms or cluster management tools](#use-cluster-platforms-or-cluster-management-tools)
   * [Cluster Training Using Fabric](#cluster-training-using-fabric)
      * [Prepare a Linux cluster](#prepare-a-linux-cluster)
      * [Launching Cluster Job](#launching-cluster-job)
      * [Kill Cluster Job](#kill-cluster-job)
      * [Check Cluster Training Result](#check-cluster-training-result)
      * [Check Model Output](#check-model-output)
   * [Cluster Training Using OpenMPI](#cluster-training-using-openmpi)
      * [Prepare an OpenMPI cluster](#prepare-an-openmpi-cluster)
      * [Launching Cluster Job](#launching-cluster-job-1)
   * [Cluster Training Using Kubernetes](#cluster-training-using-kubernetes)

## Introduction

In this article, we'll explain how to run distributed training jobs with PaddlePaddle on different types of clusters. The diagram below shows the main architecture of a distributed trainning job:

<img src="https://user-images.githubusercontent.com/13348433/31772146-41523d84-b511-11e7-8a12-a69fd136c283.png" width="500">

- Data shard: training data will be split into multiple partitions, trainers use the partitions of the whole dataset to do the training job.
- Trainer: each trainer reads the data shard, and train the neural network. Then the trainer will upload calculated "gradients" to parameter servers, and wait for parameters to be optimized on the parameter server side. When that finishes, the trainer download optimized parameters and continues its training.
- Parameter server: every parameter server stores part of the whole neural network model data. They will do optimization calculations when gradients are uploaded from trainers, and then send updated parameters to trainers.

PaddlePaddle can support both synchronize stochastic gradient descent (SGD) and asynchronous SGD.

When training with synchronize SGD, PaddlePaddle uses an internal "synchronize barrier" which makes gradients update and parameter download in strict order. On the other hand, asynchronous SGD won't wait for all trainers to finish upload at a single step, this will increase the parallelism of distributed training: parameter servers do not depend on each other, they'll do parameter optimization concurrently. Parameter servers will not wait for trainers, so trainers will also do their work concurrently. But asynchronous SGD will introduce more randomness and noises in the gradient.

## Preparations
1. Prepare your computer cluster. It's normally a bunch of Linux servers connected by LAN. Each server will be assigned a unique IP address. The computers in the cluster can be called "nodes".
2. Install PaddlePaddle on every node. If you are going to take advantage of GPU cards, you'll also need to install proper driver and CUDA libraries. To install PaddlePaddle please read [this build and install](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/getstarted/build_and_install) document. We strongly recommend using [Docker installation](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).

After installation, you can check the version by typing the below command (run a docker container  if using docker: `docker run -it paddlepaddle/paddle:[tag] /bin/bash`):

```bash
$ paddle version
PaddlePaddle 0.10.0rc, compiled with
    with_avx: ON
    with_gpu: OFF
    with_double: OFF
    with_python: ON
    with_rdma: OFF
    with_timer: OFF
```
52

53
We'll take `doc/howto/usage/cluster/src/word2vec` as an example to introduce distributed training using PaddlePaddle v2 API.
54

55
## Command-line arguments
56

57
### Starting parameter server
58

59
Type the below command to start a parameter server which will wait for trainers to connect:
60

61 62 63
```bash
$ paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradient_servers=1
```
64

65 66 67 68
If you wish to run parameter servers in background, and save a log file, you can type:
```bash
$ stdbuf -oL /usr/bin/nohup paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradient_servers=1 &> pserver.log
```
69

70 71 72 73 74 75
| param  | required | default | description |
| ------------- | ------------- | ------------- | ------------- |
| port  | required | 7164 | port which parameter server will listen on. If ports_num greater than 1, parameter server will listen on multiple ports for more network throughput |
| ports_num  | required | 1 | total number of ports will listen on  |
| ports_num_for_sparse  | required | 1 | number of ports which serves sparse parameter update  |
| num_gradient_servers  | required | 1 | total number of gradient servers |
76

77 78
### Starting trainer
Type the command below to start the trainer(name the file whatever you want, like "train.py")
79

80 81 82
```bash
$ python train.py
```
83

84
Trainers' network need to be connected with parameter servers' network to finish the job. Trainers need to know port and IPs to locate parameter servers. You can pass arguments to trainers through [environment variables](https://en.wikipedia.org/wiki/Environment_variable) or pass to `paddle.init()` function. Arguments passed to the `paddle.init()` function will overwrite environment variables.
85

86
Use environment viriables:
87

88 89 90 91 92 93 94 95 96 97 98
```bash
export PADDLE_INIT_USE_GPU=False
export PADDLE_INIT_TRAINER_COUNT=1
export PADDLE_INIT_PORT=7164
export PADDLE_INIT_PORTS_NUM=1
export PADDLE_INIT_PORTS_NUM_FOR_SPARSE=1
export PADDLE_INIT_NUM_GRADIENT_SERVERS=1
export PADDLE_INIT_TRAINER_ID=0
export PADDLE_INIT_PSERVERS=127.0.0.1
python train.py
```
99

100
Pass arguments:
101

102 103 104 105 106 107 108 109 110 111
```python
paddle.init(
        use_gpu=False,
        trainer_count=1,
        port=7164,
        ports_num=1,
        ports_num_for_sparse=1,
        num_gradient_servers=1,
        trainer_id=0,
        pservers="127.0.0.1")
112
```
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

| param  | required | default | description |
| ------------- | ------------- | ------------- | ------------- |
| use_gpu  | optional | False | set to "True" to enable GPU training |
| trainer_count  | required | 1 | total count of trainers in the training job |
| port  | required | 7164 | port to connect to parameter server  |
| ports_num  | required | 1 | number of ports for communication |
| ports_num_for_sparse  | required | 1 | number of ports for sparse type caculation |
| num_gradient_servers  | required | 1 | total number of gradient server |
| trainer_id  | required | 0 | ID for every trainer, start from 0 |
| pservers  | required | 127.0.0.1 | list of IPs of parameter servers, separated by "," |

### Prepare Training Dataset

Here's some example code [prepare.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py), it will download public `imikolov` dataset and split it into multiple files according to job parallelism(trainers count). Modify `SPLIT_COUNT` at the begining of `prepare.py` to change the count of output files.

In the real world, we often use `MapReduce` job's output as training data, so there will be lots of files. You can use `mod` to assign training file to trainers:

```python
import os
train_list = []
flist = os.listdir("/train_data/")
for f in flist:
  suffix = int(f.split("-")[1])
  if suffix % TRAINER_COUNT == TRAINER_ID:
    train_list.append(f)
139 140
```

141
Example code `prepare.py` will split training data and testing data into 3 files with digital suffix like `-00000`, `-00001` and`-00002`:
142

143 144 145 146 147 148 149 150 151 152
```
train.txt
train.txt-00000
train.txt-00001
train.txt-00002
test.txt
test.txt-00000
test.txt-00001
test.txt-00002
```
153

154
When job started, every trainer needs to get it's own part of data. In some distributed systems a storage service will be provided, so the date under that path can be accessed by all the trainer nodes. Without the storage service, you must copy the training data to each trainer node.
155

156
Different training jobs may have different data format and `reader()` function, developers may need to write different data prepare scripts and `reader()` functions for their job.
157

158
### Prepare Training program
159

160
We'll create a *workspace* directory on each node, storing your training program, dependencies, mounted or downloaded dataset directory.
161 162


163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
Your workspace may looks like:
```
.
|-- my_lib.py
|-- word_dict.pickle
|-- train.py
|-- train_data_dir/
|   |-- train.txt-00000
|   |-- train.txt-00001
|   |-- train.txt-00002
`-- test_data_dir/
    |-- test.txt-00000
    |-- test.txt-00001
    `-- test.txt-00002
```
178

179 180 181
- `my_lib.py`: user defined libraries, like PIL libs. This is optional.
- `word_dict.pickle`: dict file for training word embeding.
- `train.py`: training program. Sample code: [api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py). ***NOTE:*** You may need to modify the head part of `train.py` when using different cluster platform to retrive configuration environment variables:
182

183 184 185 186 187 188 189
  ```python
  cluster_train_file = "./train_data_dir/train/train.txt"
  cluster_test_file = "./test_data_dir/test/test.txt"
  node_id = os.getenv("OMPI_COMM_WORLD_RANK")
  if not node_id:
      raise EnvironmentError("must provied OMPI_COMM_WORLD_RANK")
  ```
190

191 192
- `train_data_dir`: containing training data. Mount from storage service or copy trainning data to here.
- `test_data_dir`: containing testing data.
193

194
## Use cluster platforms or cluster management tools
195

196 197 198 199
PaddlePaddle supports running jobs on several platforms including:
- [Kubernetes](http://kubernetes.io) open-source system for automating deployment, scaling, and management of containerized applications from Google.
- [OpenMPI](https://www.open-mpi.org) Mature high performance parallel computing framework.
- [Fabric](http://www.fabfile.org) A cluster management tool. Write scripts to submit jobs or manage the cluster.
200

201
We'll introduce cluster job management on these platforms. The examples can be found under [cluster_train_v2](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/scripts/cluster_train_v2).
202

203
These cluster platforms provide API or environment variables for training processes, when the job is dispatched to different nodes. Like node ID, IP or total number of nodes etc.
204

205
### Cluster Training Using Fabric
206

207 208 209 210 211 212
#### Prepare a Linux cluster

Run `kubectl -f ssh_servers.yaml` under the directory:  `paddle/scripts/cluster_train_v2/fabric/docker_cluster` will launch a demo cluster. Run `kubectl get po -o wide` to get IP addresses of these nodes.

#### Launching Cluster Job
`paddle.py` provides automatical scripts to start all PaddlePaddle cluster processes in different nodes. By default, all command line options can be set as `paddle.py` command options and `paddle.py` will transparently and automatically set these options to PaddlePaddle lower level processes.
213 214 215

`paddle.py`provides two distinguished command option for easy job launching.

216 217
- `job_dispatch_package` set it with local `workspace` directory, it will be dispatched to all nodes which is set in `conf.py`. It could be helpful for frequently manipulating workspace files. otherwise, frequent multi-nodes workspace deployment is very annoying.
- `job_workspace`  set it with already deployed workspace directory, `paddle.py` will skip dispatch stage to directly launch cluster job with all nodes. It could help to reduce heavy
218 219 220 221 222 223 224 225 226
dispatch latency.

`cluster_train/run.sh` provides command line sample to run `demo/recommendation` cluster job, just modify `job_dispatch_package` and `job_workspace` with your defined directory, then:
```
sh run.sh
```

The cluster Job will start in several seconds.

227 228
#### Kill Cluster Job
`paddle.py` can capture `Ctrl + C` SIGINT signal to automatically kill all processes launched by it. So just stop `paddle.py` to kill cluster job. You should manually kill the job if the program crashed.
229

230
#### Check Cluster Training Result
231 232 233
Check log in $workspace/log for details, each node owns same log structure.

`paddle_trainer.INFO`
234
It provides almost all internal output log for training,  same as local training. Check runtime model convergence here.
235 236

`paddle_pserver2.INFO`
237
It provides parameter server running log, which could help to diagnose distributed error.
238 239

`server.log`
240
It provides stderr and stdout of parameter server process. Check error log if training crashes.
241 242

`train.log`
243
It provides stderr and stdout of trainer process. Check error log if training crashes.
244

245 246
#### Check Model Output
After one pass finished, model files will be written in `output` directory in node 0.
247
`nodefile` in workspace indicates the node id of current cluster job.
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

### Cluster Training Using OpenMPI

#### Prepare an OpenMPI cluster

Run the following command to start a 3-node MPI cluster and one "head" node.

```bash
cd paddle/scripts/cluster_train_v2/openmpi/docker_cluster
kubectl create -f head.yaml
kubectl create -f mpi-nodes.yaml
```

Then you can log in to every OpenMPI node using ssh without input any passwords.

#### Launching Cluster Job

Follow the steps to launch a PaddlePaddle training job in OpenMPI cluster:\

```bash
# find out node IP addresses
kubectl get po -o wide
# generate a "machines" file containing node IP addresses
kubectl get po -o wide | grep nodes | awk '{print $6}' > machines
# copy necessary files onto "head" node
scp -i ssh/id_rsa.mpi.pub machines prepare.py train.py start_mpi_train.sh tutorial@[headIP]:~
# login to head node using ssh
ssh -i ssh/id_rsa.mpi.pub tutorial@[headIP]
# --------------- in head node ---------------
# prepare training data
python prepare.py
# copy training data and dict file to MPI nodes
cat machines | xargs -i scp word_dict.pickle train.py start_mpi_train.sh machines {}:/home/tutorial
# creat a directory for storing log files
mpirun -hostfile machines -n 3 mkdir /home/tutorial/logs
# copy training data to every node
scp train.txt-00000 test.txt-00000 [node1IP]:/home/tutorial
scp train.txt-00001 test.txt-00001 [node2IP]:/home/tutorial
scp train.txt-00002 test.txt-00002 [node3IP]:/home/tutorial
# start the job
mpirun -hostfile machines -n 3  /home/tutorial/start_mpi_train.sh
```

### Cluster Training Using Kubernetes

The details can be found [here](../k8s/k8s_cn.md)