gan_api.md.txt 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
# Design for GAN

GAN (General Adversarial Net [https://arxiv.org/abs/1406.2661]) is an important model for unsupervised learning and widely used in many areas. 

It applies several important concepts in machine learning system design, including building and running subgraphs, dependency tracing, different optimizers in one executor and so forth.

In our GAN design, we wrap it as a user-friendly easily customized python API to design different models. We take the conditional DC-GAN (Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks [https://arxiv.org/abs/1511.06434]) as an example due to its good performance on image generation.

<p align="center">
<img src="./test.dot.png" width = "35%" align="center"/><br/>
Figure 1. The overall running logic of GAN. The black solid arrows indicate the forward pass; the green dashed arrows indicate the backward pass of generator training; the red dashed arrows indicate the backward pass of the discriminator training. The BP pass of the green (red) arrow should only update the parameters in the green (red) boxes. The diamonds indicate the data providers. d\_loss and g\_loss marked in red and green are the two targets we would like to run.
</p>

The operators, layers and functions required/optional to build a GAN demo is summarized in https://github.com/PaddlePaddle/Paddle/issues/4563.

<p align="center">
<img src="./dcgan.png" width = "90%" align="center"/><br/>
Figure 2. Photo borrowed from the original DC-GAN paper.
</p>

## The Conditional-GAN might be a class. 
This design we adopt the popular open source design in https://github.com/carpedm20/DCGAN-tensorflow and https://github.com/rajathkmp/DCGAN. It contains following data structure:

- DCGAN(object): which contains everything required to build a GAN model. It provides following member functions methods as API:

- __init__(...): Initialize hyper-parameters (like conv dimension and so forth), and declare model parameters of discriminator and generator as well.

- generator(z, y=None): Generate a fake image from input noise z. If the label y is provided, the conditional GAN model will be chosen.
Returns a generated image.

- discriminator(image):
Given an image, decide if it is from a real source or a fake one. 
Returns a 0/1 binary label.

- build_model(self):
build the whole GAN model, define training loss for both generator and discrimator.

## Discussion on Engine Functions required to build GAN
- Trace the tensor and variable dependency in the engine executor. (Very critical, otherwise GAN can'be be trained correctly)
- Different optimizers responsible for optimizing different loss.

To be more detailed, we introduce our design of DCGAN as following:

### Class member Function: Initializer
- Set up hyper-parameters, including condtional dimension, noise dimension, batch size and so forth.
- Declare and define all the model variables. All the discriminator parameters are included in the list self.theta_D and all the generator parameters are included in the list self.theta_G.
```python
class DCGAN(object):
  def __init__(self, y_dim=None):
  
    # hyper parameters  
    self.y_dim = y_dim # conditional gan or not
    self.batch_size = 100
    self.z_dim = z_dim # input noise dimension

    # define parameters of discriminators
    self.D_W0 = pd.Variable(shape=[3,3, 1, 128], data=pd.gaussian_normal_randomizer())
    self.D_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.D_W2 = pd.Varialble(np.random.rand(128, 1))
    self.D_b2 = pd.Variable(np.zeros(128))
    self.theta_D = [self.D_W0, self.D_b0, self.D_W1, self.D_b1, self.D_W2, self.D_b2]

    # define parameters of generators
    self.G_W0 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.G_W2 = pd.Varialble(np.random.rand(128, 1))
    self.G_b2 = pd.Variable(np.zeros(128))
    self.theta_G = [self.G_W0, self.G_b0, self.G_W1, self.G_b1, self.G_W2, self.G_b2]
```

### Class member Function: Generator
- Given a noisy input z, returns a fake image.
- Concatenation, batch-norm, FC operations required;
- Deconv layer required, which is missing now...
```python
class DCGAN(object):
  def generator(self, z, y = None):
    # input z: the random noise
    # input y: input data label (optional)
    # output G_im: generated fake images
    
    if not self.y_dim:
      z = pd.layer.concat(1, [z, y])
      
    G_h0 = pd.layer.fc(z, self.G_w0, self.G_b0)
    G_h0_bn = pd.layer.batch_norm(G_h0)
    G_h0_relu = pd.layer.relu(G_h0_bn)
    
    G_h1 = pd.layer.deconv(G_h0_relu, self.G_w1, self.G_b1)
    G_h1_bn = pd.layer.batch_norm(G_h1)
    G_h1_relu = pd.layer.relu(G_h1_bn)
    
    G_h2 = pd.layer.deconv(G_h1_relu, self.G_W2, self.G_b2))
    G_im = pd.layer.tanh(G_im)
    return G_im
```

### Class member function: Discriminator
- Given a noisy input z, returns a fake image.
- Concatenation, Convolution, batch-norm, FC, Leaky-ReLU operations required;
```python
class DCGAN(object):
  def discriminator(self, image):
    # input image: either generated images or real ones
    # output D_h2: binary logit of the label

    D_h0 = pd.layer.conv2d(image, w=self.D_w0, b=self.D_b0)
    D_h0_bn = pd.layer.batchnorm(h0)
    D_h0_relu = pd.layer.lrelu(h0_bn)
    
    D_h1 = pd.layer.conv2d(D_h0_relu, w=self.D_w1, b=self.D_b1)
    D_h1_bn = pd.layer.batchnorm(D_h1)
    D_h1_relu = pd.layer.lrelu(D_h1_bn)
    
    D_h2 = pd.layer.fc(D_h1_relu, w=self.D_w2, b=self.D_b2)
    return D_h2
```

### Class member function: Build the model
- Define data readers as placeholders to hold the data;
- Build generator and discriminators;
- Define two training losses for discriminator and generator, respectively. 
If we have execution dependency engine to back-trace all tensors, the module building our GAN model will be like this:
```python
class DCGAN(object):
  def build_model(self):
    if self.y_dim:
        self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
    self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.z = pd.data(tf.float32, [None, self.z_size])
    
    # step 1: generate images by generator, classify real/fake images with discriminator
    if self.y_dim: # if conditional GAN, includes label
        self.G = self.generator(self.z, self.y)
        self.D_t = self.discriminator(self.images)
        # generated fake images
        self.sampled = self.sampler(self.z, self.y)
        self.D_f = self.discriminator(self.G)
    else: # original version of GAN
        self.G = self.generator(self.z)
        self.D_t = self.discriminator(self.images)
        # generate fake images
        self.sampled = self.sampler(self.z)
        self.D_f = self.discriminator(self.images)
    
    # step 2: define the two losses
    self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
    self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
    self.d_loss = self.d_loss_real + self.d_loss_fake
    
    self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))
```

If we do not have dependency engine but blocks, the module building our GAN model will be like this:
```python
class DCGAN(object):
  def build_model(self, default_block):
    # input data in the default block
    if self.y_dim:
        self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
    self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    # self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.z = pd.data(tf.float32, [None, self.z_size])

    # step 1: generate images by generator, classify real/fake images with discriminator
    with pd.default_block().g_block():
      if self.y_dim: # if conditional GAN, includes label
        self.G = self.generator(self.z, self.y)
        self.D_g = self.discriminator(self.G, self.y)
      else: # original version of GAN
        self.G = self.generator(self.z)
        self.D_g = self.discriminator(self.G, self.y)
      self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_g, np.ones(self.batch_szie))
    
    with pd.default_block().d_block():
      if self.y_dim: # if conditional GAN, includes label
        self.D_t = self.discriminator(self.images, self.y)
        self.D_f = self.discriminator(self.G, self.y)
      else: # original version of GAN
        self.D_t = self.discriminator(self.images)
        self.D_f = self.discriminator(self.G)

      # step 2: define the two losses
      self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
      self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
      self.d_loss = self.d_loss_real + self.d_loss_fake
```
Some small confusion and problems with this design:
- D\_g and D\_f are actually the same thing, but has to be written twice; i.e., if we want to run two sub-graphs conceptually, the same codes have to be written twice if they are shared by the graph.
- Requires ability to create a block anytime, rather than in if-else or rnn only;

## Main function for the demo:
Generally, the user of GAN just need to the following things:
- Define an object as DCGAN class;
- Build the DCGAN model;
- Specify two optimizers for two different losses with respect to different parameters.
```python
# pd for short, should be more concise.
from paddle.v2 as pd
import numpy as np
import logging

if __name__ == "__main__":
    # dcgan class in the default graph/block
    # if we use dependency engine as tensorflow
    # the codes, will be slightly different like:
    # dcgan = DCGAN()
    # dcgan.build_model()
    with pd.block() as def_block:
      dcgan = DCGAN()
      dcgan.build_model(def_block)

    # load mnist data
    data_X, data_y = self.load_mnist()
    
    # Two subgraphs required!!!
    with pd.block().d_block():
      d_optim = pd.train.Adam(lr = .001, beta= .1)
      d_step = d_optim.minimize(dcgan.d_loss, dcgan.theta_D)
    with pd.block.g_block():
      g_optim = pd.train.Adam(lr = .001, beta= .1)
      g_step = pd.minimize(dcgan.g_loss, dcgan.theta_G)

    # executor
    sess = pd.executor()
    
    # training
    for epoch in xrange(10000):
      for batch_id in range(N / batch_size):
        idx = ...
        # sample a batch
        batch_im, batch_label = data_X[idx:idx+batch_size], data_y[idx:idx+batch_size]
        # sample z
        batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])

        if batch_id % 2 == 0:
          sess.run(d_step, 
                   feed_dict = {dcgan.images: batch_im,
                                dcgan.y: batch_label,
                                dcgan.z: batch_z})
        else:
          sess.run(g_step,
                   feed_dict = {dcgan.z: batch_z})
```

# More thinking about dependency engine v.s. block design:
- What if we just want to run an intermediate result? Do we need to run the whole block/graph?
- Should we call eval() to get the fake images in the first stage? And then train the discriminator in the second stage?