layers_utils.py 17.5 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import copy
16
from collections import defaultdict
17
from collections.abc import Sequence
18
from uuid import uuid4
19 20 21 22 23 24
from weakref import WeakKeyDictionary

import paddle

from ..fluid.data_feeder import check_dtype, convert_dtype
from ..fluid.framework import Block, Variable, _non_static_mode
C
chengduoZH 已提交
25 26


27
def convert_to_list(value, n, name, dtype=int):
C
chengduoZH 已提交
28 29 30
    """
    Converts a single numerical type or iterable of numerical
    types into an numerical type list.
C
chengduoZH 已提交
31 32 33 34 35 36 37

    Arguments:
      value: The value to validate and convert. Could an int, or any iterable
        of ints.
      n: The size of the list to be returned.
      name: The name of the argument being validated, e.g. "stride" or
        "filter_size". This is only used to format error messages.
C
chengduoZH 已提交
38
      dtype: the numerical type of the element of the list to be returned.
C
chengduoZH 已提交
39 40

    Returns:
C
chengduoZH 已提交
41
      A list of n dtypes.
C
chengduoZH 已提交
42 43 44 45 46

    Raises:
      ValueError: If something else than an int/long or iterable thereof was
        passed.
    """
C
chengduoZH 已提交
47
    if isinstance(value, dtype):
48 49 50
        return [
            value,
        ] * n
C
chengduoZH 已提交
51 52 53 54
    else:
        try:
            value_list = list(value)
        except TypeError:
55 56 57 58 59 60
            raise ValueError(
                "The "
                + name
                + "'s type must be list or tuple. Received: "
                + str(value)
            )
C
chengduoZH 已提交
61
        if len(value_list) != n:
62 63 64 65 66 67 68 69
            raise ValueError(
                "The "
                + name
                + "'s length must be "
                + str(n)
                + ". Received: "
                + str(value)
            )
C
chengduoZH 已提交
70
        for single_value in value_list:
71 72 73 74
            assert not isinstance(single_value, Variable), (
                "Required numerical type with '%s', but received Tensor."
                % dtype
            )
C
chengduoZH 已提交
75
            try:
C
chengduoZH 已提交
76
                dtype(single_value)
C
chengduoZH 已提交
77
            except (ValueError, TypeError):
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
                raise ValueError(
                    "The "
                    + name
                    + "'s type must be a list or tuple of "
                    + str(n)
                    + " "
                    + str(dtype)
                    + " . Received: "
                    + str(value)
                    + " "
                    "including element "
                    + str(single_value)
                    + " of type"
                    + " "
                    + str(type(single_value))
                )
C
chengduoZH 已提交
94
        return value_list
G
Guo Sheng 已提交
95 96 97 98 99 100 101 102


def is_sequence(seq):
    """
    Whether `seq` is an entry or nested structure
    """
    if isinstance(seq, dict):
        return True
103
    return isinstance(seq, Sequence) and not isinstance(seq, str)
G
Guo Sheng 已提交
104 105


106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
class UniqueIdMap(WeakKeyDictionary):
    def __init__(self):
        super().__init__(self)
        self.data = defaultdict(uuid4)


uniqueidmap = UniqueIdMap()


def uniqueid(obj):
    if isinstance(obj, str):
        return (hash(obj),)
    elif isinstance(obj, list):
        return (id(obj),)
    else:
        return (uniqueidmap[obj].int,)


124 125 126 127 128
def _hash_with_id(*args):
    """
    Return int hash value calculated by id(arg) or tuple(id1,id2, ...).
    """
    assert len(args) > 0
129 130 131 132
    info = ()
    for v in args:
        info = info + uniqueid(v)
    return hash(info)
133 134


G
Guo Sheng 已提交
135 136 137 138 139
def _sorted(dict_):
    """
    Returns a sorted list of the dict keys, with error if keys not sortable.
    """
    try:
140
        return sorted(dict_.keys())
G
Guo Sheng 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    except TypeError:
        raise TypeError("nest only supports dicts with sortable keys.")


def _yield_value(iterable):
    if isinstance(iterable, dict):
        # Iterate through dictionaries in a deterministic order by sorting the
        # keys. Notice this means that we ignore the original order of `OrderedDict`
        # instances. This is intentional, to avoid potential bugs caused by mixing
        # ordered and plain dicts (e.g., flattening a dict but using a
        # corresponding `OrderedDict` to pack it back).
        for key in _sorted(iterable):
            yield iterable[key]
    else:
        for value in iterable:
            yield value


def _yield_flat_nest(nest):
    for n in _yield_value(nest):
        if is_sequence(n):
            for ni in _yield_flat_nest(n):
                yield ni
        else:
            yield n


168 169 170 171 172 173 174
def to_sequence(nest):
    if is_sequence(nest):
        return nest
    else:
        return [nest]


G
Guo Sheng 已提交
175 176
def flatten(nest):
    """
177 178 179
        :alias_main: paddle.flatten
        :alias: paddle.flatten,paddle.tensor.flatten,paddle.tensor.manipulation.flatten
        :old_api: paddle.fluid.layers.flatten
S
swtkiwi 已提交
180

G
Guo Sheng 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    Traverse all entries in the nested structure and put them into an list.
    """
    if is_sequence(nest):
        return list(_yield_flat_nest(nest))
    else:
        return [nest]


def _sequence_like(instance, args):
    """
    Convert the sequence `args` to the same type as `instance`.
    """
    if isinstance(instance, dict):
        # Pack dictionaries in a deterministic order by sorting the keys.
        # Notice this means that we ignore the original order of `OrderedDict`
        # instances. This is intentional, to avoid potential bugs caused by mixing
        # ordered and plain dicts (e.g., flattening a dict but using a
        # corresponding `OrderedDict` to pack it back).
        result = dict(zip(_sorted(instance), args))
200
        return type(instance)((key, result[key]) for key in instance.keys())
201 202 203 204 205 206
    elif (
        isinstance(instance, tuple)
        and hasattr(instance, "_fields")
        and isinstance(instance._fields, Sequence)
        and all(isinstance(f, str) for f in instance._fields)
    ):
G
Guo Sheng 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        # This is a namedtuple
        return type(instance)(*args)
    else:
        # Not a namedtuple
        return type(instance)(args)


def _packed_nest_with_indices(structure, flat, index):
    """
    Helper function for pack_sequence_as.
    """
    packed = []
    for s in _yield_value(structure):
        if is_sequence(s):
            new_index, child = _packed_nest_with_indices(s, flat, index)
            packed.append(_sequence_like(s, child))
            index = new_index
        else:
            packed.append(flat[index])
            index += 1
    return index, packed


def pack_sequence_as(structure, flat_sequence):
    """
    Pack a given flattened sequence into a given structure.
    """
    if not is_sequence(flat_sequence):
        raise TypeError("flat_sequence must be a sequence")
    if not is_sequence(structure):
        if len(flat_sequence) != 1:
            raise ValueError(
239 240 241
                "Structure is a scalar but len(flat_sequence) == %d > 1"
                % len(flat_sequence)
            )
G
Guo Sheng 已提交
242 243 244 245 246
        return flat_sequence[0]
    flat_structure = flatten(structure)
    if len(flat_structure) != len(flat_sequence):
        raise ValueError(
            "Could not pack sequence. Structure had %d elements, but flat_sequence "
247 248 249 250 251 252 253 254
            "had %d elements.  Structure: %s, flat_sequence: %s."
            % (
                len(flat_structure),
                len(flat_sequence),
                structure,
                flat_sequence,
            )
        )
G
Guo Sheng 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267
    _, packed = _packed_nest_with_indices(structure, flat_sequence, 0)
    return _sequence_like(structure, packed)


def map_structure(func, *structure):
    """
    Apply `func` to each entry in `structure` and return a new structure.
    """
    flat_structure = [flatten(s) for s in structure]
    entries = zip(*flat_structure)
    return pack_sequence_as(structure[0], [func(*x) for x in entries])


268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
def hold_mutable_vars(structure):
    """
    Returns whether structure holds sequence like `list/dict`.
    """
    for s in structure:
        if is_sequence(s):
            return True
    return False


def copy_mutable_vars(structure):
    """
    Returns vars copied from sequence without mutable property.
    """
    flat_structure = copy.copy(flatten(structure))
    return pack_sequence_as(structure, flat_structure)


G
Guo Sheng 已提交
286 287 288 289 290 291 292 293
def _recursive_assert_same_structure(nest1, nest2, check_types):
    """
    Helper function for `assert_same_structure`.
    """
    is_sequence_nest1 = is_sequence(nest1)
    if is_sequence_nest1 != is_sequence(nest2):
        raise ValueError(
            "The two structures don't have the same nested structure.\n\n"
294 295
            "First structure: %s\n\nSecond structure: %s." % (nest1, nest2)
        )
G
Guo Sheng 已提交
296 297 298 299 300 301 302 303
    if not is_sequence_nest1:
        return  # finished checking
    if check_types:
        type_nest1 = type(nest1)
        type_nest2 = type(nest2)
        if type_nest1 != type_nest2:
            raise TypeError(
                "The two structures don't have the same sequence type. First "
304 305 306
                "structure has type %s, while second structure has type %s."
                % (type_nest1, type_nest2)
            )
G
Guo Sheng 已提交
307
        if isinstance(nest1, dict):
308 309
            keys1 = set(nest1.keys())
            keys2 = set(nest2.keys())
G
Guo Sheng 已提交
310 311 312
            if keys1 != keys2:
                raise ValueError(
                    "The two dictionaries don't have the same set of keys. First "
313 314 315 316
                    "structure has keys {}, while second structure has keys {}.".format(
                        keys1, keys2
                    )
                )
G
Guo Sheng 已提交
317 318 319 320 321 322
    nest1_as_sequence = [n for n in _yield_value(nest1)]
    nest2_as_sequence = [n for n in _yield_value(nest2)]
    for n1, n2 in zip(nest1_as_sequence, nest2_as_sequence):
        _recursive_assert_same_structure(n1, n2, check_types)


323 324 325
def padding_to_same_structure(nest1, nest2, obj=None):
    def _padding_to_same_structure_single(value, obj):
        def change_none_to_obj(x):
326 327
            if x is None:
                return obj
328 329 330 331
            return x

        if is_sequence(value):
            value = pack_sequence_as(
332 333
                value, [change_none_to_obj(item) for item in flatten(value)]
            )
334 335 336 337 338 339 340 341 342
        else:
            value = change_none_to_obj(value)
        return value

    nest1 = _padding_to_same_structure_single(nest1, obj)
    nest2 = _padding_to_same_structure_single(nest2, obj)
    return nest1, nest2


G
Guo Sheng 已提交
343 344 345 346 347 348 349
def assert_same_structure(nest1, nest2, check_types=True):
    """
    Confirm two nested structures with the same structure.
    """
    len_nest1 = len(flatten(nest1)) if is_sequence(nest1) else 1
    len_nest2 = len(flatten(nest2)) if is_sequence(nest2) else 1
    if len_nest1 != len_nest2:
350 351 352 353 354 355
        raise ValueError(
            "The two structures don't have the same number of "
            "elements.\n\nFirst structure (%i elements): %s\n\n"
            "Second structure (%i elements): %s"
            % (len_nest1, nest1, len_nest2, nest2)
        )
G
Guo Sheng 已提交
356
    _recursive_assert_same_structure(nest1, nest2, check_types)
357 358 359 360 361 362 363 364 365 366 367 368 369


def _is_symmetric_padding(padding, data_dim):
    """
    Check whether padding is symmetrical.
    """
    assert len(padding) == data_dim * 2 or len(padding) == data_dim
    is_sys = True
    if len(padding) == data_dim * 2:
        for i in range(data_dim):
            if padding[i * 2] != padding[i * 2 + 1]:
                is_sys = False
    return is_sys
L
Leo Chen 已提交
370 371 372 373 374 375 376 377 378 379


def _contain_var(list_or_tuple):
    """
    Check whether list or tuple contains variable.
    """
    for item in list_or_tuple:
        if isinstance(item, Variable):
            return True
    return False
W
wangchaochaohu 已提交
380 381


382
def get_shape_tensor_inputs(inputs, attrs, shape, op_type):
383
    from ..fluid.layers.tensor import fill_constant
W
wangchaochaohu 已提交
384 385 386 387 388 389 390 391 392 393 394

    def _get_attr_shape(list_shape):
        attr_shape = []
        for idx, dim in enumerate(list_shape):
            if isinstance(dim, Variable):
                attr_shape.append(-1)
            else:
                attr_shape.append(dim)
        return attr_shape

    def _get_shape_tensor(list_shape):
395
        shape_tensor_list = []
W
wangchaochaohu 已提交
396 397 398 399
        for idx, dim in enumerate(list_shape):
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                check_dtype(
400 401 402
                    dim.dtype,
                    'shape[' + str(idx) + ']',
                    ['int32', 'int64'],
W
wangchaochaohu 已提交
403
                    op_type,
404 405
                    '(When type of shape in' + op_type + 'is list or tuple.)',
                )
W
wangchaochaohu 已提交
406
                if convert_dtype(dim.dtype) == 'int64':
407
                    dim = paddle.cast(x=dim, dtype='int32')
408
                shape_tensor_list.append(dim)
W
wangchaochaohu 已提交
409 410
            else:
                temp_out = fill_constant([1], 'int32', dim, force_cpu=True)
411 412
                shape_tensor_list.append(temp_out)
        return shape_tensor_list
W
wangchaochaohu 已提交
413 414 415

    if isinstance(shape, Variable):
        shape.stop_gradient = True
416 417 418 419 420 421 422 423
        check_dtype(
            shape.dtype,
            'shape',
            ['int32', 'int64'],
            'fill_constant',
            '(When type of shape in' + op_type + ' is Variable.)',
        )
        if convert_dtype(shape.dtype) == 'int64':
424
            shape = paddle.cast(shape, 'int32')
W
wangchaochaohu 已提交
425 426 427 428 429
        inputs["ShapeTensor"] = shape
    elif isinstance(shape, (list, tuple)):
        attrs["shape"] = _get_attr_shape(shape)
        if _contain_var(shape):
            inputs['ShapeTensorList'] = _get_shape_tensor(shape)
430 431
    else:
        raise TypeError("Shape only supports Variable, or list, or tuple.")
432 433 434 435 436 437


def _convert_to_tensor_list(old_list, dtype="int32"):
    """
    Converts all elements of a list to Variable.
    """
438
    from ..fluid.layers.tensor import fill_constant
439

440 441 442 443 444 445 446
    new_list_tensor = []
    for ele in old_list:

        if isinstance(ele, Variable):
            ele.stop_gradient = True
            new_list_tensor.append(ele)
        else:
447
            assert isinstance(ele, int)
448 449 450
            temp_out = fill_constant([1], dtype, ele, force_cpu=True)
            new_list_tensor.append(temp_out)
    return new_list_tensor
451 452


453
def convert_shape_to_list(shape):
454 455 456 457 458
    """
    Convert shape(list, tuple, variable) to list in imperative mode
    """
    if isinstance(shape, (list, tuple)):
        shape = list(
459 460 461 462 463
            map(
                lambda x: x.numpy().flat[0] if isinstance(x, Variable) else x,
                shape,
            )
        )
464
    else:
465
        shape = shape.numpy().astype(int).tolist()
466
    return shape
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481


def check_shape(shape):
    """
    Check shape type and shape elements type before passing it to fill_constant
    """
    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant')
    else:
        for ele in shape:
            if not isinstance(ele, Variable):
                if ele < 0:
                    raise ValueError(
                        "All elements in ``shape`` must be positive when it's a list or tuple"
                    )
482
                if not isinstance(ele, int):
483 484 485
                    raise TypeError(
                        "All elements in ``shape`` must be integers when it's a list or tuple"
                    )
486 487 488 489


def try_set_static_shape_tensor(tensor, shape):
    """Try to set static shape of tensor from a shape tensor.
490

491 492 493 494 495 496
    For example,

    import paddle
    paddle.enable_static()
    data = paddle.static.data(name="x", shape=[-1, 2], dtype='float32')
    shape = paddle.shape(data)  # shape should be [-1, 2] instead of [-1, -1]
497 498
    x = paddle.uniform(shape)
    print(x.shape)
499
    # (-1, 2)
500

501
    """
J
Jiabin Yang 已提交
502
    if not _non_static_mode():
503
        # static graph mode, and shape is not all inferred (contains -1)
504 505 506 507 508 509 510 511 512 513 514
        if -1 in tensor.shape:
            if isinstance(shape, Variable):
                shape = try_get_constant_shape_from_tensor(shape)
                if shape:
                    tensor.desc.set_shape(shape)


def try_get_constant_shape_from_tensor(shape_tensor):
    """Try to get shape from a tensor with constant value.

    For example,
515

516 517 518 519
    import paddle
    paddle.enable_static()
    data = paddle.static.data(name="x", shape=[-1, 2], dtype='float32')
    shape = paddle.shape(data)  # shape should be [-1, 2] instead of [-1, -1]
520 521
    x = paddle.uniform(shape)
    print(x.shape)
522
    # (-1, 2)
523

524
    """
J
Jiabin Yang 已提交
525
    if not _non_static_mode():
526 527 528 529
        try:
            if shape_tensor.op is not None:
                generate_op = shape_tensor.op
                if generate_op.type == 'shape':
530
                    var = shape_tensor.block.vars[
531 532
                        generate_op.input_arg_names[0]
                    ]
533 534 535 536 537
                    return var.shape
        except:
            return None

        return None
538 539 540 541 542 543 544 545


def get_inputs_outputs_in_block(block):
    """
    Returns the inputs and outputs variable used in this block but not
    created in this block.
    """
    assert isinstance(
546 547 548 549 550
        block, Block
    ), "input non-Block argument for get_inputs_outputs_in_block."
    assert (
        block.parent_idx != -1
    ), "input block should be a sub-block, not main block."
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

    # Find input/output var names of all ops in block
    inner_inputs = set()
    inner_outputs = set()
    for op in block.ops:
        for iname in op.input_names:
            for in_var_name in op.input(iname):
                if not block.has_var(in_var_name):
                    # variable not created in this block
                    inner_inputs.add(in_var_name)
        for oname in op.output_names:
            for out_var_name in op.output(oname):
                if not block.has_var(out_var_name):
                    # variable not created in this block
                    inner_outputs.add(out_var_name)

    return inner_inputs, inner_outputs