elementwise_raw_kernel.cu 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/backends/gpu/gpu_context.h"
#ifndef PADDLE_WITH_XPU_KP
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
#endif
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/elementwise_kernel_impl.h"

namespace phi {

template <typename T, typename Context>
void MaximumRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      int axis,
                      DenseTensor* out) {
  std::vector<const DenseTensor*> inputs;
  inputs.reserve(2);
  std::vector<DenseTensor*> outputs;
  outputs.reserve(1);
  inputs.emplace_back(&x);
  inputs.emplace_back(&y);
  outputs.emplace_back(out);
  dev_ctx.template Alloc<T>(out);
39 40
  funcs::BroadcastKernel<T>(
      dev_ctx, inputs, &outputs, funcs::MaximumFunctor<T>(), axis);
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
}

template <typename T, typename Context>
void MinimumRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      int axis,
                      DenseTensor* out) {
  std::vector<const DenseTensor*> inputs;
  inputs.reserve(2);
  std::vector<DenseTensor*> outputs;
  outputs.reserve(1);
  inputs.emplace_back(&x);
  inputs.emplace_back(&y);
  outputs.emplace_back(out);
  dev_ctx.template Alloc<T>(out);
57 58
  funcs::BroadcastKernel<T>(
      dev_ctx, inputs, &outputs, funcs::MinimumFunctor<T>(), axis);
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
}

template <typename T, typename Context>
void RemainderRawKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& y,
                        int axis,
                        DenseTensor* out) {
  std::vector<const DenseTensor*> inputs;
  inputs.reserve(2);
  std::vector<DenseTensor*> outputs;
  outputs.reserve(1);
  inputs.emplace_back(&x);
  inputs.emplace_back(&y);
  outputs.emplace_back(out);
  dev_ctx.template Alloc<T>(out);
75 76
  funcs::BroadcastKernel<T>(
      dev_ctx, inputs, &outputs, funcs::RemainderFunctor<T>(), axis);
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
}

template <typename T, typename Context>
void FloorDivideRawKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& y,
                          int axis,
                          DenseTensor* out) {
  std::vector<const DenseTensor*> inputs;
  inputs.reserve(2);
  std::vector<DenseTensor*> outputs;
  outputs.reserve(1);
  inputs.emplace_back(&x);
  inputs.emplace_back(&y);
  outputs.emplace_back(out);
  dev_ctx.template Alloc<T>(out);
93 94
  funcs::BroadcastKernel<T>(
      dev_ctx, inputs, &outputs, funcs::FloorDivideFunctor<T>(), axis);
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
}

template <typename T, typename Context>
void ElementwisePowRawKernel(const Context& dev_ctx,
                             const DenseTensor& x,
                             const DenseTensor& y,
                             int axis,
                             DenseTensor* out) {
  std::vector<const DenseTensor*> inputs;
  inputs.reserve(2);
  std::vector<DenseTensor*> outputs;
  outputs.reserve(1);
  inputs.emplace_back(&x);
  inputs.emplace_back(&y);
  outputs.emplace_back(out);
  dev_ctx.template Alloc<T>(out);
111 112
  funcs::BroadcastKernel<T>(
      dev_ctx, inputs, &outputs, funcs::ElementwisePowFunctor<T>(), axis);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
}

}  // namespace phi

#ifdef PADDLE_WITH_XPU_KP
PD_REGISTER_KERNEL(maximum_raw, KPS, ALL_LAYOUT, phi::MaximumRawKernel, float) {
}
PD_REGISTER_KERNEL(minimum_raw, KPS, ALL_LAYOUT, phi::MinimumRawKernel, float) {
}
PD_REGISTER_KERNEL(
    floor_divide_raw, KPS, ALL_LAYOUT, phi::FloorDivideRawKernel, int) {}
PD_REGISTER_KERNEL(
    elementwise_pow_raw, KPS, ALL_LAYOUT, phi::ElementwisePowRawKernel, float) {
}

#else
using float16 = phi::dtype::float16;
using bfloat16 = phi::dtype::bfloat16;

PD_REGISTER_KERNEL(maximum_raw,
                   KPS,
                   ALL_LAYOUT,
                   phi::MaximumRawKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   bfloat16) {}
PD_REGISTER_KERNEL(minimum_raw,
                   KPS,
                   ALL_LAYOUT,
                   phi::MinimumRawKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   bfloat16) {}
PD_REGISTER_KERNEL(remainder_raw,
                   KPS,
                   ALL_LAYOUT,
                   phi::RemainderRawKernel,
                   float,
                   double,
                   int,
                   float16,
160 161
                   int64_t,
                   bfloat16) {}
162 163 164 165 166 167 168 169 170 171 172 173 174 175
PD_REGISTER_KERNEL(floor_divide_raw,
                   KPS,
                   ALL_LAYOUT,
                   phi::FloorDivideRawKernel,
                   int,
                   int64_t) {}
PD_REGISTER_KERNEL(elementwise_pow_raw,
                   KPS,
                   ALL_LAYOUT,
                   phi::ElementwisePowRawKernel,
                   float,
                   double,
                   int,
                   float16,
Z
zhangyuqin1998 已提交
176 177
                   int64_t,
                   bfloat16) {}
178

179
#endif