// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/backends/gpu/gpu_context.h" #ifndef PADDLE_WITH_XPU_KP #include "paddle/phi/common/complex.h" #include "paddle/phi/common/float16.h" #endif #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/impl/elementwise_kernel_impl.h" namespace phi { template void MaximumRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { std::vector inputs; inputs.reserve(2); std::vector outputs; outputs.reserve(1); inputs.emplace_back(&x); inputs.emplace_back(&y); outputs.emplace_back(out); dev_ctx.template Alloc(out); funcs::BroadcastKernel( dev_ctx, inputs, &outputs, funcs::MaximumFunctor(), axis); } template void MinimumRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { std::vector inputs; inputs.reserve(2); std::vector outputs; outputs.reserve(1); inputs.emplace_back(&x); inputs.emplace_back(&y); outputs.emplace_back(out); dev_ctx.template Alloc(out); funcs::BroadcastKernel( dev_ctx, inputs, &outputs, funcs::MinimumFunctor(), axis); } template void RemainderRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { std::vector inputs; inputs.reserve(2); std::vector outputs; outputs.reserve(1); inputs.emplace_back(&x); inputs.emplace_back(&y); outputs.emplace_back(out); dev_ctx.template Alloc(out); funcs::BroadcastKernel( dev_ctx, inputs, &outputs, funcs::RemainderFunctor(), axis); } template void FloorDivideRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { std::vector inputs; inputs.reserve(2); std::vector outputs; outputs.reserve(1); inputs.emplace_back(&x); inputs.emplace_back(&y); outputs.emplace_back(out); dev_ctx.template Alloc(out); funcs::BroadcastKernel( dev_ctx, inputs, &outputs, funcs::FloorDivideFunctor(), axis); } template void ElementwisePowRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { std::vector inputs; inputs.reserve(2); std::vector outputs; outputs.reserve(1); inputs.emplace_back(&x); inputs.emplace_back(&y); outputs.emplace_back(out); dev_ctx.template Alloc(out); funcs::BroadcastKernel( dev_ctx, inputs, &outputs, funcs::ElementwisePowFunctor(), axis); } } // namespace phi #ifdef PADDLE_WITH_XPU_KP PD_REGISTER_KERNEL(maximum_raw, KPS, ALL_LAYOUT, phi::MaximumRawKernel, float) { } PD_REGISTER_KERNEL(minimum_raw, KPS, ALL_LAYOUT, phi::MinimumRawKernel, float) { } PD_REGISTER_KERNEL( floor_divide_raw, KPS, ALL_LAYOUT, phi::FloorDivideRawKernel, int) {} PD_REGISTER_KERNEL( elementwise_pow_raw, KPS, ALL_LAYOUT, phi::ElementwisePowRawKernel, float) { } #else using float16 = phi::dtype::float16; using bfloat16 = phi::dtype::bfloat16; PD_REGISTER_KERNEL(maximum_raw, KPS, ALL_LAYOUT, phi::MaximumRawKernel, float, double, int, int64_t, float16, bfloat16) {} PD_REGISTER_KERNEL(minimum_raw, KPS, ALL_LAYOUT, phi::MinimumRawKernel, float, double, int, int64_t, float16, bfloat16) {} PD_REGISTER_KERNEL(remainder_raw, KPS, ALL_LAYOUT, phi::RemainderRawKernel, float, double, int, float16, int64_t, bfloat16) {} PD_REGISTER_KERNEL(floor_divide_raw, KPS, ALL_LAYOUT, phi::FloorDivideRawKernel, int, int64_t) {} PD_REGISTER_KERNEL(elementwise_pow_raw, KPS, ALL_LAYOUT, phi::ElementwisePowRawKernel, float, double, int, float16, int64_t, bfloat16) {} #endif