tensor.h 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <functional>
#include <memory>
#include <utility>
20
#include <vector>
21

22 23 24 25
#ifdef PADDLE_WITH_CUDA
#include <cuda_runtime.h>
using gpuStream_t = cudaStream_t;
#endif
26

27 28 29 30 31
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
using gpuStream_t = hipStream_t;
#endif

32 33 34 35 36 37 38 39
#include "paddle/phi/api/ext/dll_decl.h"
#include "paddle/phi/api/ext/place.h"
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/common/place.h"

namespace phi {
40
class DenseTensor;
41
}  // namespace phi
42

43
namespace phi {
44
class TensorBase;
45
class DDim;
46
}  // namespace phi
47 48

namespace paddle {
49

50 51 52 53 54 55 56 57 58 59
namespace experimental {

class AbstractAutogradMeta {
 public:
  // No AbstractAutogradMeta should be created
  virtual ~AbstractAutogradMeta() {}
};

/**
 * Tensor is the API description of the basic data structure in the
60
 * [ "Paddle Tensor Operation (phi)" Library ].
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 *
 * It is not limited to a simple n-dimensional array.
 * It contains a smart pointer to `TensorImpl`. The data description contained
 * in Tensor is defined by TensorImpl. Tensor only defines the interface for
 * computation.
 *
 * This is a new Tensor design, which is independent of the original
 * framework::Tensor in fluid. The original Tensor will be gradually discarded
 * in the future.
 *
 * Note: Tensor can be NULL state, Tensor is meaningful only when the
 * TensorImpl to which it is pointed is not empty.
 *
 * Note: For the consistency of C++ API self, and the consistency between C++
 * API and Python API, all member methods of Tensor are named with lowercase
 * letters and underscores.
 *
 * Note: Tensor cannot be inherited. The heterogeneous Tensor implementation
 * can be achieved by inheriting the underlying TensorBase.
 *
 * Note: This Tensor API is suitable for training and custom operators,
 * another simple Tensor design may be required for inference.
 */

85
class PADDLE_API Tensor final {
86
 public:
87 88
  /* Part 1: Construction and destruction methods */

89 90 91 92 93 94 95 96
  /**
   * @brief Construct a new Tensor object
   */
  Tensor() = default;

  /**
   * @brief Construct a new Tensor object by copy
   */
97
  Tensor(const Tensor&) = default;
98 99 100 101

  /**
   * @brief Construct a new Tensor object by move
   */
102 103 104
  Tensor(Tensor&&) = default;

  /**
105 106 107 108
   * @brief Construct a new Tensor object by a TensorBase pointer
   *
   * @param tensor_impl
   */
109
  explicit Tensor(std::shared_ptr<phi::TensorBase> tensor_impl);
110 111 112 113 114 115

  /**
   * @brief Construct a new Tensor object on the target place.
   * This is a deprecated method and may be removed in the future!
   *
   * @param place
116
   */
117 118 119 120 121 122 123 124 125 126 127
  explicit Tensor(const PlaceType& place);

  /**
   * @brief Construct a new Tensor object on the target place
   * with specified shape.
   * This is a deprecated method and may be removed in the future!
   *
   * @param place
   * @param shape
   */
  Tensor(const PlaceType& place, const std::vector<int64_t>& shape);
128

129 130 131 132 133
  /**
   * @brief Construct a new Tensor object by a TensorBase pointer and name
   *
   * @param tensor_impl
   */
134
  Tensor(std::shared_ptr<phi::TensorBase> tensor_impl, const std::string& name);
135

J
Jiabin Yang 已提交
136
  /**
137
   * @brief Construct a new Tensor object with name
J
Jiabin Yang 已提交
138
   *
139 140 141 142
   * @note Used to adapt original execution mechanism and debug analysis
   * in the development of new dygraph. It may be removed in the future.
   * */
  explicit Tensor(const std::string& name) : name_(name) {}
J
Jiabin Yang 已提交
143

144
  /* Part 2: Dimension, DataType and DataLayout methods */
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

  /**
   * @brief Return the number of elements of Tensor.
   *
   * @return int64_t
   */
  int64_t numel() const;

  /**
   * @brief Get the size of current tensor.
   * The compatible method of `Tensor::numel()`.
   * This is a deprecated method and may be removed in the future!
   *
   * @return int64_t
   */
  int64_t size() const;

162
  /**
163 164
   * @brief Return the dimensions of Tensor.
   *
165
   * @return phi::DDim
166
   */
167
  phi::DDim dims() const;
168 169

  /**
170 171 172 173 174 175 176 177 178 179
   * @brief Return the shape (dimensions) of Tensor.
   * The compatible method of `Tensor::dims()`.
   * This is a deprecated method and may be removed in the future!
   *
   * @return std::vector<int64_t>
   */
  std::vector<int64_t> shape() const;

  /**
   * @brief Reset the shape of the tensor.
180
   * @note: This method means Reset the shape of the tensor,
181 182 183
   * and must be called before calling mutable_data() or
   * copy_to(const PlaceType& place), this is not a standard definition of
   * reshape behavior, so we will deprecated this feature in the future.
184 185 186 187 188 189 190 191 192
   *
   * @param shape
   */
  void reshape(const std::vector<int64_t>& shape);

  /**
   * @brief Return the data type of Tensor.
   *
   * @return DataType
193
   */
194
  DataType dtype() const;
195 196

  /**
197 198 199 200 201
   * @brief Return the data type of Tensor.
   * The compatible method of `Tensor::dtype()`.
   * This is a deprecated method and may be removed in the future!
   *
   * @return DataType
202
   */
203
  DataType type() const;
204 205

  /**
206 207 208
   * @brief Return the layout of Tensor.
   *
   * @return DataLayout
209
   */
210
  DataLayout layout() const;
211

C
Chen Weihang 已提交
212 213 214 215 216 217 218 219
  /**
   * @brief Determine whether tensor is DenseTensor
   *
   * @return true
   * @return false
   */
  bool is_dense_tensor() const;

220 221 222 223 224 225 226 227
  /**
   * @brief Determine whether tensor is SelectedRows
   *
   * @return true
   * @return false
   */
  bool is_selected_rows() const;

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
  /**
   * @brief Determine whether tensor is SparseCooTensor
   *
   * @return true
   * @return false
   */
  bool is_sparse_coo_tensor() const;

  /**
   * @brief Determine whether tensor is SparseCsrTensor
   *
   * @return true
   * @return false
   */
  bool is_sparse_csr_tensor() const;

244
  /* Part 3: Device and Backend methods */
245

246
  /**
247 248 249 250
   * @brief Return the place (device) of Tensor.
   * This is a deprecated method and may be removed in the future!
   *
   * @return PlaceType
251
   */
252
  PlaceType place() const;
253 254

  /**
255 256 257 258 259
   * @brief Return the place (device) of Tensor.
   * Because the `place` method already exists, so we need to use a new name,
   * here we temporarily use `inner_place`.
   *
   * @return paddle::platform::Place
260
   */
261
  phi::Place inner_place() const;
262 263

  /**
264 265 266 267
   * @brief Determine whether the tensor device is CPU
   *
   * @return true
   * @return false
268
   */
269 270 271
  bool is_cpu() const;

  /**
272
   * @brief Determine whether the tensor device is GPU
273 274 275 276
   *
   * @return true
   * @return false
   */
277 278 279 280 281 282 283 284 285
  bool is_gpu() const;

  /**
   * @brief Determine whether the tensor device is GPU_PINNED
   *
   * @return true
   * @return false
   */
  bool is_gpu_pinned() const;
286 287

  /* Part 4: Data Access methods */
288 289 290 291 292 293 294 295 296 297 298

  /**
   * @brief Get the memory pointer in CPU or GPU with specific data type.
   * It's usually used to get the output data pointer.
   *
   * @tparam T
   * @return T*
   */
  template <typename T>
  T* mutable_data();

299
  /**
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
   * @brief Get the memory pointer in CPU or GPU with specific data type.
   * It's usually used to get the output data pointer.
   * This is a deprecated method and may be removed in the future!
   *
   * @tparam T
   * @param place
   * @return T*
   */
  template <typename T>
  T* mutable_data(const PlaceType& place);

  /**
   * @brief Get the const memory pointer directly.
   * It's usually used to get the output data pointer.
   *
   * @tparam T
   * @return T*
   */
  template <typename T>
  const T* data() const;

  /**
   * @brief Get the memory pointer directly.
   * It's usually used to get the output data pointer.
   * This is a deprecated method and may be removed in the future!
   *
   * @tparam T
   * @return T*
   */
  template <typename T>
  T* data();

  /**
   * @brief Return a sub-tensor of the given tensor.
   * It is usually used to extract a sub-tensor (which supports
   * modifying the data of the original tensor) to perform further
   * operations.
   *
   * @param begin_idx The index of the start row (inclusive) to slice.
   *                  The index number begins from 0.
   * @param end_idx The index of the end row (exclusive) to slice.
   *                 The index number begins from begin_idx + 1.
   * @return Tensor
   */
344
  Tensor slice(int64_t begin_idx, int64_t end_idx) const;
345 346 347 348

  /**
   * @brief Return the implemention of current Tensor.
   *
349
   * @return std::shared_ptr<phi::TensorBase>
350
   */
351
  const std::shared_ptr<phi::TensorBase>& impl() const;
352 353 354 355 356 357

  /**
   * @brief Set the implemention of current Tensor.
   *
   * @param impl
   */
358
  void set_impl(const std::shared_ptr<phi::TensorBase>& impl);
359

360 361 362 363 364 365 366
  /**
   * @brief Set the implemention of current Tensor.
   *
   * @param impl
   */
  void set_impl(std::shared_ptr<phi::TensorBase>&& impl);

367 368 369 370 371 372 373 374 375 376
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  /**
   * @brief Get the stream where the tensor is currently located
   * This is a deprecated method and may be removed in the future!
   *
   * @return gpuStream_t
   */
  gpuStream_t stream() const;
#endif

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
  /**
   * @brief Return the name of Tensor.
   * @note Used to adapt original execution mechanism and debug analysis
   * in the development of new dygraph. It may be removed in the future.
   *
   * @return const std::string&
   */
  const std::string& name() const { return name_; }

  /**
   * @brief Set name of Tensor.
   * @note Used to adapt original execution mechanism and debug analysis
   * in the development of new dygraph. It may be removed in the future.
   *
   * @param const std::string& name
   */
  void set_name(const std::string& name) { name_ = name; }

395
  /* Part 5: Data Transform methods */
396 397
  /* Alert!!!!: All copy method can only deep copy impl, autograd info only be
   * copied */
398
  /* out of phi */
399 400
  /**
   * @brief Copy the current Tensor data to the specified device
401
   * and return the new Tensor. It's usually used to set the input tensor data.
402 403 404 405
   * @note The Tensor's `copy_to` method is deprecated since version 2.3, and
   * will be removed in version 2.4, please use `copy_to` method without
   * template argument instead.
   * reason: copying a Tensor to another device does not need to specify the
406
   * data type template argument
407 408 409 410
   *
   * @tparam T
   * @param target_place, the target place of which the tensor will copy to.
   * @return Tensor
411
   */
412 413
  template <typename T>
  Tensor copy_to(const PlaceType& target_place) const;
414 415

  /**
416 417
   * @brief Transfer the current Tensor to the specified device and return.
   *
418 419
   * @param backend, The target backend of which the tensor will copy to.
   * @param blocking, Should we copy this in sync way.
420 421
   * @return Tensor
   */
422
  Tensor copy_to(Backend backend, bool blocking) const;
423 424

  /**
425 426 427 428 429 430
   * @brief Transfer the source Tensor to current Tensor.
   *
   * @param src, the source Tensor to be copied.
   * @param blocking, Should we copy this in sync way.
   * @return void
   */
431 432 433
  void copy_(const Tensor& src,
             const phi::Place& target_place,
             const bool blocking);
434
  /**
435 436 437 438
   * @brief Cast datatype from one to another
   *
   * @param target_type
   * @return Tensor
439
   */
440
  Tensor cast(DataType target_type) const;
441

442
  /* Part 6: Status utils methods */
443

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
  /**
   * @brief Determine whether it is a meaningful Tensor
   *
   * @return true
   * @return false
   */
  bool defined() const;

  /**
   * @brief Determine whether Tensor is initialized.
   *
   * @return true
   * @return false
   */
  bool initialized() const;

  /**
   * @brief Determine whether Tensor is initialized.
   * This is a deprecated method and may be removed in the future!
   *
   * @return true
   * @return false
   */
  bool is_initialized() const;
468 469

  /**
470
   * @brief Reset the Tensor implementation
471
   */
472 473 474
  void reset();

  /* Part 7: Operator overloading */
475 476

  /**
477 478 479 480
   * @brief Assignment operator
   *
   * @param x
   * @return Tensor&
481
   */
482
  Tensor& operator=(const Tensor& x) &;
483 484

  /**
485 486 487 488
   * @brief Move assignment operator
   *
   * @param x
   * @return Tensor&
489
   */
490
  Tensor& operator=(Tensor&& x) &;
491

492
  /* Part 8: Autograd methods */
493

494 495 496 497 498 499
  /**
   * @brief Get the autograd meta object
   *
   * @return AbstractAutogradMeta*
   */
  AbstractAutogradMeta* get_autograd_meta() const;
500

501 502 503 504 505 506
  /**
   * @brief Set the autograd meta object
   *
   * @param autograd_meta
   */
  void set_autograd_meta(std::shared_ptr<AbstractAutogradMeta> autograd_meta);
507

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
  /* Part 9: Inplace methods */

  /**
   * @brief Increase inplace version
   */
  void bump_inplace_version();

  /**
   * @brief Get current inplace version
   *
   * @return uint32_t
   */
  uint32_t current_inplace_version();

  /* Part 10: Auto generated Tensor methods */
523

524 525 526 527 528 529 530 531
 private:
  /**
   * [ Why use abstract TensorImpl interface here? ]
   *
   * We hope that the data structure at the API level of the framework can be
   * unified to Tensor, but Tensor itself is heterogeneous.
   *
   * Tensor can generally be represented by void* and size_t, place.
532
   * This is suitable for most scenarios including CPU, GPU, HIP, CPU, etc.,
533 534 535 536 537 538 539 540 541 542
   * but there are a few cases where this definition cannot be described,
   * such as the Tensor representation in third-party lib such as Metal,
   * OpenCL, etc., as well as some special Tensor implementations, including
   * Tensor containing only one Scalar value, or Tensor representing String,
   * etc.
   *
   * Therefore, we hope to use a unified interface to shield the underlying
   * heterogeneous Tensor implementation, so that the API level can be unified
   * to one `Tensor`.
   */
543
  std::shared_ptr<phi::TensorBase> impl_;
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558

  /**
   * [ Why need abstract AbstractAutogradMeta here? ]
   *
   * Dynamic graphs need to hold backward information
   *
   * [ Why AutogradMeta not in TensorImpl? ]
   *
   * 1. AutogradMeta is only used in dynamic graph, It is execution-related
   *    information, not Tensor data description-related information.
   * 2. Kernel calculation does not require AutogradMeta.
   */
  std::shared_ptr<AbstractAutogradMeta> autograd_meta_{nullptr};

  /**
559
   * Tensor name: used to adapt original execution mechanism and debug analysis
560
   * in the development of new dygraph. It may be removed in the future.
561
   */
562
  std::string name_{""};
563 564 565 566 567 568

  /**
   * Place type: Return the expected memory location if the Tensor is
   * uninitialized.
   */
  PlaceType place_{PlaceType::kUNK};
569 570 571 572
};

}  // namespace experimental
}  // namespace paddle