test_numel_op.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18
from eager_op_test import OpTest
19

20
import paddle
21
import paddle.fluid as fluid
22 23 24 25 26


class TestNumelOp(OpTest):
    def setUp(self):
        self.op_type = "size"
27
        self.python_api = paddle.numel
28 29
        self.init()
        x = np.random.random((self.shape)).astype("float64")
30 31 32
        self.inputs = {
            'Input': x,
        }
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
        self.outputs = {'Out': np.array([np.size(x)])}

    def test_check_output(self):
        self.check_output()

    def init(self):
        self.shape = (6, 56, 8, 55)


class TestNumelOp1(TestNumelOp):
    def init(self):
        self.shape = (11, 66)


class TestNumelOp2(TestNumelOp):
    def init(self):
49
        self.shape = (0,)
50 51


52
class TestNumelAPI(unittest.TestCase):
53 54 55 56 57 58
    def test_numel_static(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            shape1 = [2, 1, 4, 5]
            shape2 = [1, 4, 5]
59 60
            x_1 = paddle.fluid.data(shape=shape1, dtype='int32', name='x_1')
            x_2 = paddle.fluid.data(shape=shape2, dtype='int32', name='x_2')
61 62 63 64 65
            input_1 = np.random.random(shape1).astype("int32")
            input_2 = np.random.random(shape2).astype("int32")
            out_1 = paddle.numel(x_1)
            out_2 = paddle.numel(x_2)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
66 67 68 69 70 71 72
            res_1, res_2 = exe.run(
                feed={
                    "x_1": input_1,
                    "x_2": input_2,
                },
                fetch_list=[out_1, out_2],
            )
73
            # TODO(zhouwei): will change shape [1] to [] to support zero-dim
74
            assert np.array_equal(
zhouweiwei2014's avatar
zhouweiwei2014 已提交
75
                res_1, np.array(np.size(input_1)).astype("int64")
76 77
            )
            assert np.array_equal(
zhouweiwei2014's avatar
zhouweiwei2014 已提交
78
                res_2, np.array(np.size(input_2)).astype("int64")
79
            )
80 81 82 83 84

    def test_numel_imperative(self):
        paddle.disable_static(paddle.CPUPlace())
        input_1 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_2 = np.random.random([1, 4, 5]).astype("int32")
85 86
        x_1 = paddle.to_tensor(input_1)
        x_2 = paddle.to_tensor(input_2)
87 88
        out_1 = paddle.numel(x_1)
        out_2 = paddle.numel(x_2)
89 90
        assert np.array_equal(out_1.numpy().item(0), np.size(input_1))
        assert np.array_equal(out_2.numpy().item(0), np.size(input_2))
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        paddle.enable_static()

    def test_error(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):

            def test_x_type():
                shape = [1, 4, 5]
                input_1 = np.random.random(shape).astype("int32")
                out_1 = paddle.numel(input_1)

            self.assertRaises(TypeError, test_x_type)


if __name__ == '__main__':
    unittest.main()