未验证 提交 495a9ceb 编写于 作者: W wangchaochaohu 提交者: GitHub

fix the input error of size Op (#28272)

上级 6905608c
......@@ -11363,10 +11363,10 @@ def size(input):
"""
if in_dygraph_mode():
return core.ops.size(x)
return core.ops.size(input)
check_variable_and_dtype(
x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
"size")
input, 'input',
['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], "size")
helper = LayerHelper('size', **locals())
out = helper.create_variable_for_type_inference(dtype='int64')
helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})
......
......@@ -48,7 +48,7 @@ class TestNumelOp2(TestNumelOp):
self.shape = (0, )
class TestNumelOoAPI(unittest.TestCase):
class TestNumelAPI(unittest.TestCase):
def test_numel_static(self):
main_program = fluid.Program()
startup_program = fluid.Program()
......
......@@ -14,6 +14,8 @@
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
from op_test import OpTest
......@@ -53,5 +55,55 @@ class TestLargeTensor(TestSizeOp):
self.shape = [2**10]
class TestSizeAPI(unittest.TestCase):
def test_size_static(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
shape1 = [2, 1, 4, 5]
shape2 = [1, 4, 5]
x_1 = paddle.fluid.data(shape=shape1, dtype='int32', name='x_1')
x_2 = paddle.fluid.data(shape=shape2, dtype='int32', name='x_2')
input_1 = np.random.random(shape1).astype("int32")
input_2 = np.random.random(shape2).astype("int32")
out_1 = paddle.fluid.layers.size(x_1)
out_2 = paddle.fluid.layers.size(x_2)
exe = paddle.static.Executor(place=paddle.CPUPlace())
res_1, res_2 = exe.run(feed={
"x_1": input_1,
"x_2": input_2,
},
fetch_list=[out_1, out_2])
assert (np.array_equal(
res_1, np.array([np.size(input_1)]).astype("int64")))
assert (np.array_equal(
res_2, np.array([np.size(input_2)]).astype("int64")))
def test_size_imperative(self):
paddle.disable_static(paddle.CPUPlace())
input_1 = np.random.random([2, 1, 4, 5]).astype("int32")
input_2 = np.random.random([1, 4, 5]).astype("int32")
x_1 = paddle.to_tensor(input_1)
x_2 = paddle.to_tensor(input_2)
out_1 = paddle.fluid.layers.size(x_1)
out_2 = paddle.fluid.layers.size(x_2)
assert (np.array_equal(out_1.numpy().item(0), np.size(input_1)))
assert (np.array_equal(out_2.numpy().item(0), np.size(input_2)))
paddle.enable_static()
def test_error(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
def test_x_type():
shape = [1, 4, 5]
input_1 = np.random.random(shape).astype("int32")
out_1 = paddle.fluid.layers.size(input_1)
self.assertRaises(TypeError, test_x_type)
if __name__ == '__main__':
paddle.enable_static()
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册