data_feeder.py 4.8 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from py_paddle import DataProviderConverter
Y
Yu Yang 已提交
15
import collections
Y
Yu Yang 已提交
16
import paddle.trainer.PyDataProvider2 as pydp2
D
dangqingqing 已提交
17 18

__all__ = ['DataFeeder']
19 20


Y
Yu Yang 已提交
21 22 23 24 25 26 27
def default_feeding_map(data_types):
    reader_dict = dict()
    for i, tp in enumerate(data_types):
        reader_dict[tp[0]] = i
    return reader_dict


28 29 30 31
class DataFeeder(DataProviderConverter):
    """
    DataFeeder converts the data returned by paddle.reader into a data structure
    of Arguments which is defined in the API. The paddle.reader usually returns
Q
qiaolongfei 已提交
32
    a list of mini-batch data entries. Each data entry in the list is one sample.
D
dangqingqing 已提交
33 34 35
    Each sample is a list or a tuple with one feature or multiple features.
    DataFeeder converts this mini-batch data entries into Arguments in order
    to feed it to C++ interface.
36
    
37 38 39 40 41
    The simple usage shows below

    ..  code-block:: python

        feeding = ['image', 'label']
Y
Yu Yang 已提交
42
        data_types = enumerate_data_types_of_data_layers(topology)
43 44 45 46 47 48 49 50 51 52
        feeder = DataFeeder(data_types=data_types, feeding=feeding)

        minibatch_data = [([1.0, 2.0, 3.0, ...], 5)]

        arg = feeder(minibatch_data)


    If mini-batch data and data layers are not one to one mapping, we
    could pass a dictionary to feeding parameter to represent the mapping
    relationship.
Y
Yu Yang 已提交
53 54 55 56


    ..  code-block:: python

57 58
        data_types = [('image', paddle.data_type.dense_vector(784)),
                      ('label', paddle.data_type.integer_value(10))]
59 60
        feeding = {'image':0, 'label':1}
        feeder = DataFeeder(data_types=data_types, feeding=feeding)
61 62 63 64
        minibatch_data = [
                           ( [1.0,2.0,3.0,4.0], 5, [6,7,8] ),  # first sample
                           ( [1.0,2.0,3.0,4.0], 5, [6,7,8] )   # second sample
                         ]
D
dangqingqing 已提交
65 66 67 68
        # or minibatch_data = [
        #                       [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ],  # first sample
        #                       [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ]   # second sample
        #                     ]
Q
qijun 已提交
69
        arg = feeder.convert(minibatch_data)
Y
Yu Yang 已提交
70 71 72 73 74 75 76 77 78 79 80 81

    ..  note::

        This module is for internal use only. Users should use the `reader`
        interface.



    :param data_types: A list to specify data name and type. Each item is
                       a tuple of (data_name, data_type).

    :type data_types: list
82 83 84
    :param feeding: A dictionary or a sequence to specify the position of each
                    data in the input data.
    :type feeding: dict|collections.Sequence|None
85 86
    """

Y
Yu Yang 已提交
87
    def __init__(self, data_types, feeding=None):
88
        self.input_names = []
D
dangqingqing 已提交
89
        input_types = []
Y
Yu Yang 已提交
90 91
        if feeding is None:
            feeding = default_feeding_map(data_types)
Y
Yu Yang 已提交
92 93 94 95 96 97 98
        elif isinstance(feeding, collections.Sequence):
            feed_list = feeding
            feeding = dict()
            for i, name in enumerate(feed_list):
                feeding[name] = i
        elif not isinstance(feeding, dict):
            raise TypeError("Feeding should be dict or sequence or None.")
Y
Yu Yang 已提交
99 100

        self.feeding = feeding
101 102
        for each in data_types:
            self.input_names.append(each[0])
Y
Yu Yang 已提交
103 104 105
            if not isinstance(each[1], pydp2.InputType):
                raise TypeError("second item in each data_type should be an "
                                "InputType")
D
dangqingqing 已提交
106 107
            input_types.append(each[1])
        DataProviderConverter.__init__(self, input_types)
108

109 110 111
    def __len__(self):
        return len(self.input_names)

112 113
    def convert(self, dat, argument=None):
        """
D
dangqingqing 已提交
114 115
        :param dat: A list of mini-batch data. Each sample is a list or tuple
                    one feature or multiple features.
Y
Yu Yang 已提交
116 117

        :type dat: list
118 119 120
        :param argument: An Arguments object contains this mini-batch data with
                         one or multiple features. The Arguments definition is
                         in the API.
Y
Yu Yang 已提交
121
        :type argument: py_paddle.swig_paddle.Arguments
122 123
        """

D
dangqingqing 已提交
124 125 126 127 128
        def reorder_data(data):
            retv = []
            for each in data:
                reorder = []
                for name in self.input_names:
Y
Yu Yang 已提交
129
                    reorder.append(each[self.feeding[name]])
D
dangqingqing 已提交
130 131
                retv.append(reorder)
            return retv
D
dangqingqing 已提交
132

D
dangqingqing 已提交
133
        return DataProviderConverter.convert(self, reorder_data(dat), argument)