operator.h 26.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
30
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
34
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/scope.h"
36
#include "paddle/fluid/framework/selected_rows_utils.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/tensor.h"
38
#include "paddle/fluid/framework/unused_var_check.h"
39
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/platform/device_context.h"
41

42 43 44
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
45
#include "paddle/utils/flat_hash_map.h"
46

W
wanghuancoder 已提交
47 48 49 50 51 52 53 54 55
namespace paddle {
namespace framework {
class InferShapeContext;
class OpInfo;
class Scope;
class Variable;
}  // namespace framework
}  // namespace paddle

56 57 58 59
namespace phi {
class KernelContext;
}

Q
Qiao Longfei 已提交
60 61
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
62 63 64
namespace paddle {
namespace framework {

65
/// If a variable is a empty variable, that name will be used.
66
constexpr char kEmptyVarName[] = "@EMPTY@";
67 68 69

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
70
constexpr char kTempVarName[] = "@TEMP@";
71 72

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
73 74
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
75
constexpr char kGradVarSuffix[] = "@GRAD";
76

M
minqiyang 已提交
77 78
constexpr size_t kGradVarSuffixSize = 5U;

79
/// Variables with this suffix are supposed to be filled up with zeros.
80
constexpr char kZeroVarSuffix[] = "@ZERO";
81

C
chengduo 已提交
82 83 84
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
85 86 87 88 89 90 91 92
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
93 94 95 96 97 98 99 100 101
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
102
// define some kernel priority
103
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
104 105
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

106
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
107 108 109 110 111
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
112 113
}

M
minqiyang 已提交
114
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
115
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
116 117 118 119 120
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
121 122
}

123
inline bool VarIsTensor(const Variable& var) {
124
  return var.IsType<phi::DenseTensor>() || var.IsType<phi::SelectedRows>();
125 126
}

127 128 129
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var);
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
130

131
class ExecutionContext;
W
wanghuancoder 已提交
132
class OperatorBase;
133

X
Xin Pan 已提交
134 135
class RuntimeContext {
 public:
X
Xin Pan 已提交
136
  RuntimeContext(const VariableNameMap& innames,
137 138
                 const VariableNameMap& outnames,
                 const Scope& scope);
X
Xin Pan 已提交
139

X
Xin Pan 已提交
140 141 142 143
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
144 145 146 147
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
148
/**
X
Xin Pan 已提交
149
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
150 151 152 153 154 155
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
156 157 158 159
  OperatorBase(const std::string& type,
               const VariableNameMap& inputs,
               const VariableNameMap& outputs,
               const AttributeMap& attrs);
160

Q
Qiao Longfei 已提交
161 162
  virtual ~OperatorBase() {}

163
  /// Executor will call this interface function to Run an op.
164 165
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
166

T
typhoonzero 已提交
167 168 169
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

170
  /// if scope is not null, also show dimensions of arguments
171
  virtual std::string DebugStringEx(const Scope* scope) const;
172
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
173

174
  virtual bool SupportGPU() const { return false; }
B
Baibaifan 已提交
175
  virtual bool SupportNPU() const { return false; }
F
fwenguang 已提交
176
  virtual bool SupportMLU() const { return false; }
177
  virtual bool SupportXPU() const { return false; }
178

179 180
  const std::string& Type() const { return type_; }

181 182 183
  bool HasAttr(const std::string& name) const {
    return attrs_.count(name) || runtime_attrs_.count(name);
  }
184 185
  template <typename T>
  inline const T& Attr(const std::string& name) const {
186 187 188 189 190 191 192 193 194 195 196
    auto it = attrs_.find(name);
    if (it == attrs_.end()) {
      it = runtime_attrs_.find(name);
      PADDLE_ENFORCE_NE(
          it,
          runtime_attrs_.end(),
          platform::errors::NotFound(
              "(%s) is not found in AttributeMap and RuntimeAttributeMap.",
              name));
    }
    return PADDLE_GET_CONST(T, it->second);
197
  }
198 199
  void SetAttr(const std::string& name, const Attribute& v) {
    PADDLE_ENFORCE_EQ(
200 201
        HasAttr(name),
        true,
202 203 204 205 206
        platform::errors::NotFound(
            "The attribute %s is not found in operator %s", name, Type()));

    attrs_[name] = v;
  }
207
  const AttributeMap& Attrs() const { return attrs_; }
208 209 210 211
  const AttributeMap& RuntimeAttrs() const { return runtime_attrs_; }
  void SetRuntimeAttributeMap(const AttributeMap& runtime_attrs) {
    runtime_attrs_ = runtime_attrs;
  }
D
dongzhihong 已提交
212

Y
Yu Yang 已提交
213 214
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
215 216
  VariableNameMap& Inputs() { return inputs_; }
  VariableNameMap& Outputs() { return outputs_; }
217

S
sneaxiy 已提交
218
  const OpInfo& Info() const {
219
    PADDLE_ENFORCE_NOT_NULL(
220 221 222
        info_,
        platform::errors::NotFound("OpInfo of operator (%s) is not found.",
                                   type_));
S
sneaxiy 已提交
223 224 225
    return *info_;
  }

226
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
227
  //! Get a input with argument's name described in `op_proto`
228
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
229
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
230
  const std::vector<std::string>& Inputs(const std::string& name) const;
231
  //! Get all inputs variable names
Q
qijun 已提交
232 233
  std::vector<std::string> InputVars() const;

234
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
235
  //! Get a output with argument's name described in `op_proto`
236
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
237 238
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
239
  const std::vector<std::string>& Outputs(const std::string& name) const;
240
  //! Get all outputs variable names
Y
Yu Yang 已提交
241
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
242

243
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
244

B
baojun-nervana 已提交
245
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
246 247
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
248

Z
Zhang Ting 已提交
249 250 251 252 253
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

254 255 256 257
  uint64_t Id() const { return id_; }

  void SetId(uint64_t id) { id_ = id; }

Q
qiaolongfei 已提交
258
 protected:
Q
Qiao Longfei 已提交
259
  std::string type_;
D
dongzhihong 已提交
260
  // NOTE: in case of OpGrad, inputs_ contains:
261
  // I (Inputs)
D
dongzhihong 已提交
262 263
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
264
  VariableNameMap inputs_;
Y
Yu Yang 已提交
265

D
dongzhihong 已提交
266 267
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
268
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
269
  AttributeMap attrs_;
270 271 272 273 274 275
  // NOTE: runtime_attrs_ contains the attributes which used for dispatching
  // kernel (use_mkldnn, use_cudnn, ...) or passing additional configuration
  // for special heterogeneous kernel (workspace_size_MB, ...).
  // The attributes in runtime_attrs_ are setted by framework (such as PASS),
  // and not in the python api.
  AttributeMap runtime_attrs_;
S
sneaxiy 已提交
276 277 278 279

  // OpInfo
  const OpInfo* info_;

280 281 282
  // OpDesc Id
  uint64_t id_ = UINT64_MAX;

283 284
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
285 286 287 288

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
289 290
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
291 292
};

293
class ExecutionContext {
Y
Yan Chunwei 已提交
294
 public:
295 296
  ExecutionContext(const OperatorBase& op,
                   const Scope& scope,
X
Xin Pan 已提交
297
                   const platform::DeviceContext& device_context,
298 299
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
300
  virtual ~ExecutionContext() {}
301

H
hong 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
322 323 324

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
325
  template <typename T>
Y
Yu Yang 已提交
326
  inline const T& Attr(const std::string& name) const {
R
Ruibiao Chen 已提交
327
    return PADDLE_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
328 329
  }

H
hong 已提交
330
  virtual const Attribute& GetAttr(const std::string& name) const {
331 332
    auto iter = op_.Attrs().find(name);
    if (iter == op_.Attrs().end()) {
333 334 335 336 337 338 339 340
      iter = op_.RuntimeAttrs().find(name);
      PADDLE_ENFORCE_NE(
          iter,
          op_.RuntimeAttrs().end(),
          platform::errors::NotFound("(%s) is not found in AttributeMap and "
                                     "RuntimeAttributeMap of (%s) operator.",
                                     name,
                                     op_.Type()));
341
    }
342
    return iter->second;
H
hong 已提交
343
  }
344

H
hong 已提交
345
  virtual bool HasInput(const std::string& name) const;
346

347 348
  virtual bool HasInputs(const std::string& name) const;

H
hong 已提交
349
  virtual bool HasOutput(const std::string& name) const;
350

H
hong 已提交
351
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
352
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
353 354
  }

H
hong 已提交
355
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
356
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
357 358
  }

H
hong 已提交
359
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
360

H
hong 已提交
361
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
362

H
hong 已提交
363
  virtual const std::vector<Variable*> MultiInputVar(
364
      const std::string& name) const {
365 366
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
367 368 369 370
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
371
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
372 373
  }

H
hong 已提交
374
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
375 376 377 378 379 380 381
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

C
Chen Weihang 已提交
382 383
  virtual paddle::small_vector<const std::string*> InNameList() const {
    paddle::small_vector<const std::string*> vec_temp;
H
hong 已提交
384 385 386
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
387
      vec_temp.push_back(&input.first);
H
hong 已提交
388 389 390 391 392
    }

    return vec_temp;
  }

393 394
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
395
    auto* var = InputVar(name);
396
    return var == nullptr ? nullptr : &var->Get<T>();
397 398 399 400
  }

  template <typename T>
  T* Output(const std::string& name) const {
401
    auto var = OutputVar(name);
402
    return var == nullptr ? nullptr : var->GetMutable<T>();
403 404 405 406
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
407 408
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
409 410
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
411 412 413 414
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
415 416 417
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(res),
H
hong 已提交
418
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
419 420 421 422 423 424 425
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
426 427 428
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
429 430
      return {};
    }
H
hong 已提交
431

X
Xin Pan 已提交
432 433
    std::vector<T*> res;
    res.reserve(vars.size());
434 435 436
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(res),
X
Xin Pan 已提交
437 438 439
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
440

X
Xin Pan 已提交
441 442 443
    return res;
  }

444
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
445

Q
QI JUN 已提交
446 447 448 449 450
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

451
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
452
    return device_context_;
Q
qijun 已提交
453
  }
Q
qijun 已提交
454

455
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
L
Leo Chen 已提交
456
  const inline phi::GPUContext& cuda_device_context() const {
457 458
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()),
                      true,
459 460
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
L
Leo Chen 已提交
461
    return *reinterpret_cast<const phi::GPUContext*>(&device_context_);
Q
QI JUN 已提交
462 463 464
  }
#endif

X
Xin Pan 已提交
465
  template <typename T, typename DevContext>
466 467
  phi::DenseTensor AllocateTmpTensor(const framework::DDim& dim,
                                     const DevContext& dev_ctx) const {
468 469 470 471
    phi::DenseTensor tmp;
    tmp.Resize(dim);
    dev_ctx.template Alloc<T>(&tmp);
    return tmp;
X
Xin Pan 已提交
472 473
  }

H
hong 已提交
474 475 476
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
477
  const OperatorBase& GetOp() const { return op_; }
H
hong 已提交
478

479
 private:
480 481
  const OperatorBase& op_;
  const Scope& scope_;
482
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
483
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
484 485
};

486
// TODO(chenweihang): split impl based OpProto or Dygraph if needed
487
class ExecutionArgumentMappingContext : public phi::ArgumentMappingContext {
488 489 490 491 492
 public:
  explicit ExecutionArgumentMappingContext(const ExecutionContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
493
    return ctx_.HasInputs(name);
494 495 496 497 498 499
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

500 501 502 503
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

504 505 506
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.GetAttr(name);
    return GetAttrValue(attr);
507 508 509
  }

  size_t InputSize(const std::string& name) const override {
510
    return ctx_.MultiInputVar(name).size();
511 512 513
  }

  size_t OutputSize(const std::string& name) const override {
514
    return ctx_.MultiOutputVar(name).size();
515 516 517
  }

  bool IsDenseTensorInput(const std::string& name) const override {
518 519 520 521 522
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::DenseTensor>();
  }

  bool IsDenseTensorInputs(const std::string& name) const override {
523 524 525 526
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::DenseTensor>();
    });
527 528
  }

Y
YuanRisheng 已提交
529 530 531 532 533 534 535
  bool IsSelectedRowsInputs(const std::string& name) const override {
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SelectedRows>();
    });
  }

536
  bool IsSelectedRowsInput(const std::string& name) const override {
537 538
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::SelectedRows>();
539 540
  }

541
  bool IsDenseTensorVectorInput(const std::string& name) const override {
542 543 544 545
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<framework::LoDTensorArray>();
    });
546 547
  }

548 549 550 551 552
  bool IsSparseCooTensorInput(const std::string& name) const override {
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::SparseCooTensor>();
  }

553 554 555 556 557
  bool IsSparseCsrTensorInput(const std::string& name) const override {
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::SparseCsrTensor>();
  }

558
  bool IsDenseTensorOutput(const std::string& name) const override {
559 560 561 562
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::DenseTensor>();
    });
563 564 565
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
566 567 568 569
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SelectedRows>();
    });
570 571
  }

572 573
  bool IsForInferShape() const override { return false; }

574 575 576 577
 private:
  const ExecutionContext& ctx_;
};

578
template <>
579 580
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const;
581 582

template <>
583
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
584 585
    const std::string& name) const;

Y
Yu Yang 已提交
586
class OpKernelBase {
Q
qijun 已提交
587
 public:
Q
qijun 已提交
588
  /**
589
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
590 591
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
592
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
593 594
   */

595
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
596

Y
Yu Yang 已提交
597 598 599 600 601 602 603
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
604 605
};

Y
Yu Yang 已提交
606 607
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
608
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
609
  using OpKernelMap =
Y
yuyang18 已提交
610
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
611

612 613 614
  OperatorWithKernel(const std::string& type,
                     const VariableNameMap& inputs,
                     const VariableNameMap& outputs,
615 616 617
                     const AttributeMap& attrs);

  virtual ~OperatorWithKernel();
Y
Yu Yang 已提交
618

C
chentianyu03 已提交
619
  static paddle::flat_hash_map<std::string /* op_type */, OpKernelMap>&
Y
Yu Yang 已提交
620
  AllOpKernels() {
C
chentianyu03 已提交
621
    static paddle::flat_hash_map<std::string, OpKernelMap> g_all_op_kernels;
Y
Yu Yang 已提交
622
    return g_all_op_kernels;
Y
Yu Yang 已提交
623
  }
Y
Yan Chunwei 已提交
624

625 626 627
  bool SupportGPU() const override;

  bool SupportNPU() const override;
628

F
fwenguang 已提交
629
  bool SupportMLU() const override {
630
    // TODO(zhiqiu): support phi if needed?
F
fwenguang 已提交
631
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
632 633
    return std::any_of(op_kernels.begin(),
                       op_kernels.end(),
F
fwenguang 已提交
634 635 636 637
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_mlu_place(kern_pair.first.place_);
                       });
  }
638 639 640

  bool SupportXPU() const override;

641
  bool SupportsMKLDNN(phi::DataType data_type) const;
642

643
  bool SupportsCUDNN(phi::DataType data_type) const;
644

645 646
  bool SupportsKernelType(const OpKernelType& kernel_type,
                          const ExecutionContext& exe_ctx) const;
647

648 649 650
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       phi::DataType data_type) const;

651 652
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       proto::VarType::Type data_type) const;
653

654 655 656
  bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                      phi::DataType data_type) const;

657 658 659
  bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                      proto::VarType::Type data_type) const;

660
  virtual void InferShape(InferShapeContext* ctx) const;
Y
Yu Yang 已提交
661

662 663
  void RuntimeInferShape(const Scope& scope,
                         const platform::Place& place,
X
Xin Pan 已提交
664
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
665

666 667 668
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

669
  proto::VarType::Type IndicateOrPromoteVarDataTypes(
670 671
      const ExecutionContext& ctx,
      const std::string& name1,
672 673
      const std::string& name2) const;

674 675
  virtual phi::KernelKey GetExpectedKernelType(
      const ExecutionContext& ctx) const;
X
Xin Pan 已提交
676

677 678
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
679
  virtual phi::KernelKey GetKernelTypeForVar(
680
      const std::string& var_name,
681
      const phi::DenseTensor& tensor,
682
      const phi::KernelKey& expected_kernel_type) const;
Y
Yu Yang 已提交
683

684 685
  platform::Place GetExecutionPlace(
      const platform::Place& platform) const override {
Z
Zhang Ting 已提交
686 687 688
    return kernel_type_->place_;
  }

689
  /* member functions for adapting to phi lib */
690 691 692 693 694 695 696
  /** In the phi::DenseTensor calculation library, the new Kernel adopts a
   * clearer and more streamlined design. The arguments of the Kernel and the
   * input and output arguments registered in the original OpMaker do not match
   * in some cases, so we use map to record the arguments required by the
   * kernel. When selecting Kernel during Op execution, select the arguments of
   * the original Op according to the GetExpectedPhiKernelArgs returned
   * arguments.
697
   */
698
  phi::KernelSignature GetExpectedPhiKernelArgs(
699 700
      const ExecutionContext& ctx) const;

701 702
  /* member functions for adapting to phi lib */
  phi::KernelKey ChoosePhiKernel(const ExecutionContext& ctx) const;
703

704
  void ChooseKernel(const ExecutionContext& ctx) const;
705

706 707
  void BuildPhiKernelContext(const RuntimeContext& ctx,
                             platform::DeviceContext* dev_ctx,
708
                             phi::KernelContext* phi_kernel_context) const;
709

710
  phi::KernelSignature* PhiKernelSignature() const {
711
    return kernel_signature_.get();
712 713
  }

714
  phi::Kernel* PhiKernel() const { return phi_kernel_.get(); }
715

716
  void ResetPhiKernel(phi::Kernel* kernel) const {
717
    return phi_kernel_.reset(kernel);
718 719
  }

720
  const OpKernelType* kernel_type() const { return kernel_type_.get(); }
721
  const OpKernelFunc* kernel_func() const { return kernel_func_.get(); }
722

723 724 725 726
  void ResetKernelType(OpKernelType* kernel_type) {
    kernel_type_.reset(kernel_type);
  }

727 728 729 730
  bool DnnFallback() const { return dnn_fallback_; }

  void SetDnnFallback(bool dnn_fallback) const { dnn_fallback_ = dnn_fallback; }

Y
Yu Yang 已提交
731
 private:
732
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
733 734
  void RunImpl(const Scope& scope,
               const platform::Place& place,
L
luotao1 已提交
735
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
736 737

  /**
T
tianshuo78520a 已提交
738
   * Transfer data from scope to a transferred scope. If there is no data need
739
   * to be transferred, it returns nullptr.
Y
yuyang18 已提交
740
   *
741
   * transfered_inplace_vars is a output vector.
Y
yuyang18 已提交
742
   */
X
Xin Pan 已提交
743
  Scope* PrepareData(const Scope& scope,
744
                     const phi::KernelKey& expected_kernel_key,
X
Xin Pan 已提交
745
                     std::vector<std::string>* transfered_inplace_vars,
746 747
                     RuntimeContext* ctx,
                     const phi::Place& place) const;
Y
yuyang18 已提交
748 749 750 751

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
752

753 754
  OpKernelType InnerGetExpectedKernelType(const ExecutionContext& ctx) const;

755 756 757
  void HandleComplexGradToRealGrad(const Scope& scope,
                                   RuntimeContext* ctx) const;

758 759 760 761 762
  /* Inner assist methods */
  // indicate kernel DataType by input data.
  // By default all input data must be same.
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
  // used for IndicateDataType
763 764
  void ParseInputDataType(const Variable* vars,
                          const std::string& name,
765
                          proto::VarType::Type* data_type) const;
766 767 768
  void ParseMultiInputDataType(const std::vector<Variable*>& vars,
                               const std::string& name,
                               proto::VarType::Type* data_type) const;
769
  // used for IndicateOrPromoteVarDataTypes
770 771
  phi::DenseTensor* GetTensorFormInputSafely(const ExecutionContext& ctx,
                                             const std::string& name) const;
772

773
 protected:
L
Liu Yiqun 已提交
774 775
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
776 777
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
778
  mutable bool need_prepare_data_ = true;
779
  mutable bool need_prepare_phi_data_ = false;
780 781
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
782
  mutable std::mutex cache_update_mutex_;
783
  mutable bool enable_cache_transfer_scope_ = false;
784 785 786 787
  // NOTE(jiahongyu): Whether fallback to plain kernel after calling
  // GetExpectedKernelType, use this bool flag to solve mkldnn and cudnn hard
  // code
  mutable bool dnn_fallback_ = false;
788
  // NOTE(chenweihang): Similar op members are used to adapt to
789
  // new phi kernel, if there is a better design in the future,
790
  // we may polish the implementation here
791
  mutable bool run_phi_kernel_ = false;
L
Liu-xiandong 已提交
792
  mutable bool run_kp_kernel = false;
793
  mutable std::unique_ptr<phi::KernelSignature> kernel_signature_;
794
  mutable std::unique_ptr<phi::Kernel> phi_kernel_;
795
  mutable std::unique_ptr<phi::ArgumentMappingFn> arg_map_fn_;
796

797
 private:
798
  struct CacheImpl;
799
  mutable std::unique_ptr<CacheImpl> impl_;
Q
Qiao Longfei 已提交
800 801
};

Y
Yu Yang 已提交
802 803
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
804 805
}  // namespace framework
}  // namespace paddle