loss.py 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

from paddle import fluid
from paddle.fluid.framework import in_dygraph_mode, Variable
from paddle.fluid.dygraph.base import to_variable

from .utils import to_list

__all__ = ['Loss', 'CrossEntropy', 'SoftmaxWithCrossEntropy']


class Loss(object):
    """
    Base class for loss, encapsulates loss logic and APIs

    Usage:
        custom_loss = CustomLoss()
        loss = custom_loss(inputs, labels)
    
    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.loss import Loss
            from paddle import fluid

            class SoftmaxWithCrossEntropy(Loss):
                def __init__(self, average=True):
                    super(SoftmaxWithCrossEntropy, self).__init__(average)

                def forward(self, outputs, labels):
                    return [
                        fluid.layers.softmax_with_cross_entropy(
                            o, l, return_softmax=False) for o, l in zip(outputs, labels)
                    ]
            
    """

    def __init__(self, average=True):
        super(Loss, self).__init__()
        self.average = average

    def forward(self, outputs, labels):
        raise NotImplementedError()

    def __call__(self, outputs, labels=None):
        labels = to_list(labels)
        if in_dygraph_mode() and labels:
            labels = [to_variable(l) for l in labels]
        losses = to_list(self.forward(to_list(outputs), labels))
        if self.average:
            losses = [fluid.layers.reduce_mean(l) for l in losses]
        else:
            losses = [fluid.layers.reduce_sum(l) for l in losses]
        return losses


class CrossEntropy(Loss):
    """
    Args:
        input (list[Variable]): Input tensor, the data type is float32,
            float64, int32, int64.
        label (list[Variable]): Label tensor, the data type is float32,
            float64, int32, int64.
        average (bool, optional): Indicate whether to average the loss, Default: True.
    Returns:
        list[Variable]: The tensor variable storing the cross_entropy_loss of inputs and labels.

    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.model import Input
            from paddle.incubate.hapi.vision.models import LeNet
            from paddle.incubate.hapi.loss import CrossEntropy

            inputs = [Input([-1, 1, 28, 28], 'float32', name='image')]
            labels = [Input([None, 1], 'int64', name='label')]

            model = LeNet()
            loss = CrossEntropy()
            model.prepare(loss_function=loss, inputs=inputs, labels=labels)
            
    """

    def __init__(self, average=True):
        super(CrossEntropy, self).__init__(average)

    def forward(self, outputs, labels):
        return [
            fluid.layers.cross_entropy(o, l) for o, l in zip(outputs, labels)
        ]


class SoftmaxWithCrossEntropy(Loss):
    """
    this op combined softmax and cross entropy.
    Args:
        input (list[Variable]): Input tensor, the data type is float32,
            float64, int32, int64.
        label (list[Variable]): Label tensor, the data type is float32,
            float64, int32, int64.
        average (bool, optional): Indicate whether to average the loss, Default: True.
    Returns:
        list[Variable]: The tensor variable storing the cross_entropy_loss of inputs and labels.

    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.model import Input
            from paddle.incubate.hapi.vision.models import LeNet
            from paddle.incubate.hapi.loss import SoftmaxWithCrossEntropy

            inputs = [Input([-1, 1, 28, 28], 'float32', name='image')]
            labels = [Input([None, 1], 'int64', name='label')]

            model = LeNet(classifier_activation=None)
            loss = SoftmaxWithCrossEntropy()
            model.prepare(loss_function=loss, inputs=inputs, labels=labels)
    """

    def __init__(self, average=True):
        super(SoftmaxWithCrossEntropy, self).__init__(average)

    def forward(self, outputs, labels):
        return [
            fluid.layers.softmax_with_cross_entropy(
                o, l, return_softmax=False) for o, l in zip(outputs, labels)
        ]