# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from paddle import fluid from paddle.fluid.framework import in_dygraph_mode, Variable from paddle.fluid.dygraph.base import to_variable from .utils import to_list __all__ = ['Loss', 'CrossEntropy', 'SoftmaxWithCrossEntropy'] class Loss(object): """ Base class for loss, encapsulates loss logic and APIs Usage: custom_loss = CustomLoss() loss = custom_loss(inputs, labels) Examples: .. code-block:: python from paddle.incubate.hapi.loss import Loss from paddle import fluid class SoftmaxWithCrossEntropy(Loss): def __init__(self, average=True): super(SoftmaxWithCrossEntropy, self).__init__(average) def forward(self, outputs, labels): return [ fluid.layers.softmax_with_cross_entropy( o, l, return_softmax=False) for o, l in zip(outputs, labels) ] """ def __init__(self, average=True): super(Loss, self).__init__() self.average = average def forward(self, outputs, labels): raise NotImplementedError() def __call__(self, outputs, labels=None): labels = to_list(labels) if in_dygraph_mode() and labels: labels = [to_variable(l) for l in labels] losses = to_list(self.forward(to_list(outputs), labels)) if self.average: losses = [fluid.layers.reduce_mean(l) for l in losses] else: losses = [fluid.layers.reduce_sum(l) for l in losses] return losses class CrossEntropy(Loss): """ Args: input (list[Variable]): Input tensor, the data type is float32, float64, int32, int64. label (list[Variable]): Label tensor, the data type is float32, float64, int32, int64. average (bool, optional): Indicate whether to average the loss, Default: True. Returns: list[Variable]: The tensor variable storing the cross_entropy_loss of inputs and labels. Examples: .. code-block:: python from paddle.incubate.hapi.model import Input from paddle.incubate.hapi.vision.models import LeNet from paddle.incubate.hapi.loss import CrossEntropy inputs = [Input([-1, 1, 28, 28], 'float32', name='image')] labels = [Input([None, 1], 'int64', name='label')] model = LeNet() loss = CrossEntropy() model.prepare(loss_function=loss, inputs=inputs, labels=labels) """ def __init__(self, average=True): super(CrossEntropy, self).__init__(average) def forward(self, outputs, labels): return [ fluid.layers.cross_entropy(o, l) for o, l in zip(outputs, labels) ] class SoftmaxWithCrossEntropy(Loss): """ this op combined softmax and cross entropy. Args: input (list[Variable]): Input tensor, the data type is float32, float64, int32, int64. label (list[Variable]): Label tensor, the data type is float32, float64, int32, int64. average (bool, optional): Indicate whether to average the loss, Default: True. Returns: list[Variable]: The tensor variable storing the cross_entropy_loss of inputs and labels. Examples: .. code-block:: python from paddle.incubate.hapi.model import Input from paddle.incubate.hapi.vision.models import LeNet from paddle.incubate.hapi.loss import SoftmaxWithCrossEntropy inputs = [Input([-1, 1, 28, 28], 'float32', name='image')] labels = [Input([None, 1], 'int64', name='label')] model = LeNet(classifier_activation=None) loss = SoftmaxWithCrossEntropy() model.prepare(loss_function=loss, inputs=inputs, labels=labels) """ def __init__(self, average=True): super(SoftmaxWithCrossEntropy, self).__init__(average) def forward(self, outputs, labels): return [ fluid.layers.softmax_with_cross_entropy( o, l, return_softmax=False) for o, l in zip(outputs, labels) ]