mnist.py 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import gzip
import struct
import numpy as np

import paddle.dataset.common
from paddle.io import Dataset
from .utils import _check_exists_and_download

__all__ = ["MNIST"]

URL_PREFIX = 'https://dataset.bj.bcebos.com/mnist/'
TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
TEST_IMAGE_MD5 = '9fb629c4189551a2d022fa330f9573f3'
TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
TEST_LABEL_MD5 = 'ec29112dd5afa0611ce80d1b7f02629c'
TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432'


class MNIST(Dataset):
    """
    Implement of MNIST dataset

    Args:
        image_path(str): path to image file, can be set None if
            :attr:`download` is True. Default None
        label_path(str): path to label file, can be set None if
            :attr:`download` is True. Default None
        chw_format(bool): If set True, the output shape is [1, 28, 28],
            otherwise, output shape is [1, 784]. Default True.
        mode(str): 'train' or 'test' mode. Default 'train'.
        download(bool): whether auto download mnist dataset if
            :attr:`image_path`/:attr:`label_path` unset. Default
            True

    Returns:
        Dataset: MNIST Dataset.

    Examples:
        
        .. code-block:: python

            from paddle.incubate.hapi.datasets import MNIST

            mnist = MNIST(mode='test')

            for i in range(len(mnist)):
                sample = mnist[i]
                print(sample[0].shape, sample[1])

    """

    def __init__(self,
                 image_path=None,
                 label_path=None,
                 chw_format=True,
                 mode='train',
                 transform=None,
                 download=True):
        assert mode.lower() in ['train', 'test'], \
                "mode should be 'train' or 'test', but got {}".format(mode)
        self.mode = mode.lower()
        self.chw_format = chw_format
        self.image_path = image_path
        if self.image_path is None:
            assert download, "image_path not set and auto download disabled"
            image_url = TRAIN_IMAGE_URL if mode == 'train' else TEST_IMAGE_URL
            image_md5 = TRAIN_IMAGE_MD5 if mode == 'train' else TEST_IMAGE_MD5
            self.image_path = _check_exists_and_download(
                image_path, image_url, image_md5, 'mnist', download)

        self.label_path = label_path
        if self.label_path is None:
            assert download, "label_path not set and auto download disabled"
            label_url = TRAIN_LABEL_URL if mode == 'train' else TEST_LABEL_URL
            label_md5 = TRAIN_LABEL_MD5 if mode == 'train' else TEST_LABEL_MD5
            self.label_path = _check_exists_and_download(
                label_path, label_url, label_md5, 'mnist', download)

        self.transform = transform

        # read dataset into memory
        self._parse_dataset()

    def _parse_dataset(self, buffer_size=100):
        self.images = []
        self.labels = []
        with gzip.GzipFile(self.image_path, 'rb') as image_file:
            img_buf = image_file.read()
            with gzip.GzipFile(self.label_path, 'rb') as label_file:
                lab_buf = label_file.read()

                step_label = 0
                offset_img = 0
                # read from Big-endian
                # get file info from magic byte
                # image file : 16B
                magic_byte_img = '>IIII'
                magic_img, image_num, rows, cols = struct.unpack_from(
                    magic_byte_img, img_buf, offset_img)
                offset_img += struct.calcsize(magic_byte_img)

                offset_lab = 0
                # label file : 8B
                magic_byte_lab = '>II'
                magic_lab, label_num = struct.unpack_from(magic_byte_lab,
                                                          lab_buf, offset_lab)
                offset_lab += struct.calcsize(magic_byte_lab)

                while True:
                    if step_label >= label_num:
                        break
                    fmt_label = '>' + str(buffer_size) + 'B'
                    labels = struct.unpack_from(fmt_label, lab_buf, offset_lab)
                    offset_lab += struct.calcsize(fmt_label)
                    step_label += buffer_size

                    fmt_images = '>' + str(buffer_size * rows * cols) + 'B'
                    images_temp = struct.unpack_from(fmt_images, img_buf,
                                                     offset_img)
                    images = np.reshape(images_temp, (buffer_size, rows *
                                                      cols)).astype('float32')
                    offset_img += struct.calcsize(fmt_images)

                    images = images / 255.0
                    images = images * 2.0
                    images = images - 1.0

                    for i in range(buffer_size):
                        self.images.append(images[i, :])
                        self.labels.append(
                            np.array([labels[i]]).astype('int64'))

    def __getitem__(self, idx):
        image, label = self.images[idx], self.labels[idx]
        if self.chw_format:
            image = np.reshape(image, [1, 28, 28])
        if self.transform is not None:
            image = self.transform(image)
        return image, label

    def __len__(self):
        return len(self.labels)