# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import gzip import struct import numpy as np import paddle.dataset.common from paddle.io import Dataset from .utils import _check_exists_and_download __all__ = ["MNIST"] URL_PREFIX = 'https://dataset.bj.bcebos.com/mnist/' TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz' TEST_IMAGE_MD5 = '9fb629c4189551a2d022fa330f9573f3' TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz' TEST_LABEL_MD5 = 'ec29112dd5afa0611ce80d1b7f02629c' TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz' TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873' TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz' TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432' class MNIST(Dataset): """ Implement of MNIST dataset Args: image_path(str): path to image file, can be set None if :attr:`download` is True. Default None label_path(str): path to label file, can be set None if :attr:`download` is True. Default None chw_format(bool): If set True, the output shape is [1, 28, 28], otherwise, output shape is [1, 784]. Default True. mode(str): 'train' or 'test' mode. Default 'train'. download(bool): whether auto download mnist dataset if :attr:`image_path`/:attr:`label_path` unset. Default True Returns: Dataset: MNIST Dataset. Examples: .. code-block:: python from paddle.incubate.hapi.datasets import MNIST mnist = MNIST(mode='test') for i in range(len(mnist)): sample = mnist[i] print(sample[0].shape, sample[1]) """ def __init__(self, image_path=None, label_path=None, chw_format=True, mode='train', transform=None, download=True): assert mode.lower() in ['train', 'test'], \ "mode should be 'train' or 'test', but got {}".format(mode) self.mode = mode.lower() self.chw_format = chw_format self.image_path = image_path if self.image_path is None: assert download, "image_path not set and auto download disabled" image_url = TRAIN_IMAGE_URL if mode == 'train' else TEST_IMAGE_URL image_md5 = TRAIN_IMAGE_MD5 if mode == 'train' else TEST_IMAGE_MD5 self.image_path = _check_exists_and_download( image_path, image_url, image_md5, 'mnist', download) self.label_path = label_path if self.label_path is None: assert download, "label_path not set and auto download disabled" label_url = TRAIN_LABEL_URL if mode == 'train' else TEST_LABEL_URL label_md5 = TRAIN_LABEL_MD5 if mode == 'train' else TEST_LABEL_MD5 self.label_path = _check_exists_and_download( label_path, label_url, label_md5, 'mnist', download) self.transform = transform # read dataset into memory self._parse_dataset() def _parse_dataset(self, buffer_size=100): self.images = [] self.labels = [] with gzip.GzipFile(self.image_path, 'rb') as image_file: img_buf = image_file.read() with gzip.GzipFile(self.label_path, 'rb') as label_file: lab_buf = label_file.read() step_label = 0 offset_img = 0 # read from Big-endian # get file info from magic byte # image file : 16B magic_byte_img = '>IIII' magic_img, image_num, rows, cols = struct.unpack_from( magic_byte_img, img_buf, offset_img) offset_img += struct.calcsize(magic_byte_img) offset_lab = 0 # label file : 8B magic_byte_lab = '>II' magic_lab, label_num = struct.unpack_from(magic_byte_lab, lab_buf, offset_lab) offset_lab += struct.calcsize(magic_byte_lab) while True: if step_label >= label_num: break fmt_label = '>' + str(buffer_size) + 'B' labels = struct.unpack_from(fmt_label, lab_buf, offset_lab) offset_lab += struct.calcsize(fmt_label) step_label += buffer_size fmt_images = '>' + str(buffer_size * rows * cols) + 'B' images_temp = struct.unpack_from(fmt_images, img_buf, offset_img) images = np.reshape(images_temp, (buffer_size, rows * cols)).astype('float32') offset_img += struct.calcsize(fmt_images) images = images / 255.0 images = images * 2.0 images = images - 1.0 for i in range(buffer_size): self.images.append(images[i, :]) self.labels.append( np.array([labels[i]]).astype('int64')) def __getitem__(self, idx): image, label = self.images[idx], self.labels[idx] if self.chw_format: image = np.reshape(image, [1, 28, 28]) if self.transform is not None: image = self.transform(image) return image, label def __len__(self): return len(self.labels)