post_training_quantization.py 53.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
15 16
import os
import re
17 18 19 20 21
import logging
import numpy as np
from .... import io
from .... import core
from .... import framework
22
from ....executor import global_scope, Executor
23 24 25 26 27
from ....framework import IrGraph
from ....log_helper import get_logger
from .quantization_pass import QuantizationTransformPass
from .quantization_pass import QuantizationFreezePass
from .quantization_pass import AddQuantDequantPass
28 29 30
from .quantization_pass import _out_scale_op_list
from .quantization_pass import _get_op_input_var_names
from .quantization_pass import _get_op_output_var_names
31
from .quantization_pass import _get_output_name_index
32
from .quantization_pass import _get_input_name_index
33
from .quantization_pass import _channelwise_quant_axis1_ops
34

35
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
36 37 38 39 40

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


41 42 43 44
def _load_variable_data(scope, var_name):
    '''
    Load variable value from scope
    '''
45 46 47 48
    var_node = scope.find_var(var_name)
    assert var_node is not None, \
        "Cannot find " + var_name + " in scope."
    return np.array(var_node.get_tensor())
49 50 51 52 53 54 55 56 57 58 59 60 61 62


def _set_variable_data(scope, place, var_name, np_value):
    '''
    Set the value of var node by name, if the node exits,
    '''
    assert isinstance(np_value, np.ndarray), \
        'The type of value should be numpy array.'
    var_node = scope.find_var(var_name)
    if var_node != None:
        tensor = var_node.get_tensor()
        tensor.set(np_value, place)


63 64 65 66 67 68 69 70
def _all_persistable_var_names(program):
    persistable_var_names = []
    for var in program.list_vars():
        if var.persistable:
            persistable_var_names.append(var.name)
    return persistable_var_names


71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
def _remove_unused_var_nodes(graph):
    all_used_vars = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            all_used_vars.add(input_node)
        for output_node in op_node.outputs:
            all_used_vars.add(output_node)

    all_used_vars = {n.node for n in all_used_vars}
    all_unused_vars = {
        n
        for n in filter(lambda node: node.node not in all_used_vars,
                        graph.all_var_nodes())
    }
    graph.safe_remove_nodes(all_unused_vars)
    return graph


def _remove_ctrl_vars(graph):
    remove_ctr_vars = set()
    for node in graph.all_var_nodes():
        if node.is_ctrl_var():
            remove_ctr_vars.add(node)
    graph.safe_remove_nodes(remove_ctr_vars)
    return graph


def _apply_pass(scope,
                graph,
                pass_name,
                attrs=None,
                attr_values=None,
                debug=False):
    ir_pass = core.get_pass(pass_name)
    cpp_graph = graph.graph
    if not cpp_graph.has('__param_scope__'):
        cpp_graph.set_not_owned('__param_scope__', scope)
    if attrs:
        assert attr_values and len(attrs) == len(
            attr_values), "Different number of pass attributes and their values."
        for attr, value in zip(attrs, attr_values):
            ir_pass.set(attr, value)
    ir_pass.apply(cpp_graph)
    if debug:
        graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes())
    _remove_unused_var_nodes(graph)
    return graph


121
class PostTrainingQuantization(object):
122 123 124 125 126 127
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

128
    def __init__(self,
129 130 131
                 executor=None,
                 scope=None,
                 model_dir=None,
132 133
                 model_filename=None,
                 params_filename=None,
134
                 batch_generator=None,
135
                 sample_generator=None,
136 137 138
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
139
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
140
                 is_full_quantize=False,
141
                 activation_bits=8,
142 143 144
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
145
                 optimize_model=False,
146
                 is_use_cache_file=False,
147
                 cache_dir=None):
148
        '''
149
        Constructor.
150 151

        Args:
152
            executor(fluid.Executor): The executor to load, run and save the
153
                quantized model.
154 155
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
156 157 158 159 160 161 162 163 164
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
165 166 167 168 169 170 171 172
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
173 174 175 176
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
177 178 179 180 181
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
                and max value for quantized activations and weights. Default is KL.
182 183
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
184 185
                "mul"].
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
186
                apply quantization to all supported quantizable op type. If set
187 188
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
189
            activation_bits(int): quantization bit number for activation.
190 191 192 193 194 195 196 197 198 199 200 201
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
202 203 204 205 206 207 208 209
            optimize_model(bool, optional): If set optimize_model as True, it applies
                some passes to the model before quantization, and it supports
                `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
                weights are quantized by tensor-wise method, which means the weights
                scale for all channel are the same. However, if fuse
                `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
                be different. In address this problem, fuse the pattern before
                quantization. Default False.
210 211
            is_use_cache_file(bool, optional): This param is deprecated.
            cache_dir(str, optional): This param is deprecated.
212 213 214
        Returns:
            None

215 216 217 218 219 220
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
221 222 223 224 225 226 227 228 229
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
230
            # sample generator must return a sample every time. The reference
231 232 233
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
234 235 236
            batch_size = 10
            batch_nums = 10
            algo = "KL"
237
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
238 239
            ptq = PostTrainingQuantization(
                        executor=exe,
240 241 242 243
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
244 245 246 247 248 249 250
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
251

252 253 254 255 256
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
        self._support_algo_type = ['KL', 'abs_max', 'min_max']
257
        self._dynamic_quantize_op_type = ['lstm']
258 259
        self._support_quantize_op_type = \
            list(set(QuantizationTransformPass._supported_quantizable_op_type +
260 261
                AddQuantDequantPass._supported_quantizable_op_type +
                self._dynamic_quantize_op_type))
262 263

        # Check inputs
264 265
        assert executor is not None, "The executor cannot be None."
        assert model_dir is not None, "The model_dir cannot be None."
266 267 268 269 270
        assert any([gen is not None] for gen in [sample_generator,
            batch_generator]), "The sample_generator and batch_generator " \
            "cannot be None in the same time."
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
271
            "The algo should be KL, abs_max or min_max."
272 273 274 275 276 277 278 279
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
280
        self._executor = executor
281
        self._scope = global_scope() if scope == None else scope
282 283 284
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
285
        self._sample_generator = sample_generator
286
        self._batch_generator = batch_generator
287 288 289
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
290 291 292 293 294
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._is_full_quantize = is_full_quantize
295
        if is_full_quantize:
296
            self._quantizable_op_type = self._support_quantize_op_type
297 298 299
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
300
                assert op_type in self._support_quantize_op_type, \
301
                    op_type + " is not supported for quantization."
302
        self._optimize_model = optimize_model
303

304
        # Define variables
305 306 307 308 309 310
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
        self._data_loader = None

311
        self._out_scale_op_list = _out_scale_op_list
312 313
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
314 315 316 317
        self._weight_op_pairs = {}
        # The vars for alog = KL
        self._sampling_act_abs_min_max = {}
        self._sampling_act_histogram = {}
318
        self._sampling_data = {}
319
        self._quantized_var_kl_threshold = {}
320 321
        self._histogram_bins = 2048
        # The vars for algo = min_max
322 323
        self._quantized_var_min = {}
        self._quantized_var_max = {}
324
        # The vars for algo = abs_max
325
        self._quantized_var_abs_max = {}
326 327 328

    def quantize(self):
        '''
329 330 331
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
332 333 334 335

        Args:
            None
        Returns:
336 337
            the program of quantized model.
        '''
338
        self._load_model_data()
339
        self._collect_target_varnames()
340
        self._set_activation_persistable()
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        if self._algo == "KL":
            _logger.info("Preparation stage ...")
            batch_id = 0
            for data in self._data_loader():
                self._executor.run(program=self._program,
                                   feed=data,
                                   fetch_list=self._fetch_list,
                                   return_numpy=False,
                                   scope=self._scope)
                self._collect_activation_abs_min_max()
                if batch_id % 5 == 0:
                    _logger.info("Run batch: " + str(batch_id))
                batch_id += 1
                if self._batch_nums and batch_id >= self._batch_nums:
                    break
            _logger.info("Finish preparation stage, all batch:" + str(batch_id))
            self._init_sampling_act_histogram()

        _logger.info("Sampling stage ...")
361 362 363 364
        batch_id = 0
        for data in self._data_loader():
            self._executor.run(program=self._program,
                               feed=data,
365
                               fetch_list=self._fetch_list,
366 367
                               return_numpy=False,
                               scope=self._scope)
368
            self._sampling()
369
            if batch_id % 5 == 0:
370
                _logger.info("Run batch: " + str(batch_id))
371 372 373
            batch_id += 1
            if self._batch_nums and batch_id >= self._batch_nums:
                break
374
        _logger.info("Finish sampling stage, all batch: " + str(batch_id))
375

376
        self._reset_activation_persistable()
377

378 379
        if self._algo == "KL":
            self._calculate_kl_threshold()
380

381 382 383 384 385 386
        if self._algo in ["KL", "abs_max"]:
            self._update_program()
        else:
            self._save_input_threhold()

        self._save_output_threshold()
387 388 389 390
        if any(op_type in self._quantizable_op_type
               for op_type in self._dynamic_quantize_op_type):
            self._collect_dynamic_quantize_op_threshold(
                self._dynamic_quantize_op_type)
391 392
        return self._program

393 394 395 396
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
397 398 399 400
        '''
        Save the quantized model to the disk.

        Args:
401 402 403 404 405 406 407
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
408
        Returns:
409 410 411 412
            None
        '''
        io.save_inference_model(
            dirname=save_model_path,
413 414
            model_filename=model_filename,
            params_filename=params_filename,
415 416 417 418
            feeded_var_names=self._feed_list,
            target_vars=self._fetch_list,
            executor=self._executor,
            main_program=self._program)
419
        _logger.info("The quantized model is saved in " + save_model_path)
420

421
    def _load_model_data(self):
422
        '''
423
        Load model and set data loader.
424
        '''
425
        _logger.info("Load model and set data loader ...")
426
        [self._program, self._feed_list, self._fetch_list] = \
427 428 429 430
            io.load_inference_model(dirname=self._model_dir,
                                    executor=self._executor,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)
431

432 433 434 435
        if self._program.num_blocks > 1:
            _logger.error("The post training quantization requires that the "
                          "program only has one block.")

436 437 438
        if self._optimize_model:
            self._optimize_fp32_model()

439 440 441 442
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
        self._data_loader = io.DataLoader.from_generator(
            feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True)
443 444 445 446 447 448 449 450 451 452
        if self._sample_generator is not None:
            self._data_loader.set_sample_generator(
                self._sample_generator,
                batch_size=self._batch_size,
                drop_last=True,
                places=self._place)
        elif self._batch_generator is not None:
            self._data_loader.set_batch_generator(
                self._batch_generator, places=self._place)

453 454 455 456 457 458 459 460
    def _optimize_fp32_model(self):
        '''
        Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model.
        '''
        _logger.info("Optimize FP32 model ...")
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)
        graph = _remove_ctrl_vars(graph)
        graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass')
461 462
        graph = _apply_pass(self._scope, graph, 'depthwise_conv_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph, 'conv_transpose_bn_fuse_pass')
463 464
        self._program = graph.to_program()

465
    def _collect_target_varnames(self):
466 467 468 469
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
470
        # TODO(juncaipeng), consider the name_scope of skip_quant
471
        _logger.info("Collect quantized variable names ...")
472

473
        def collect_var_name(var_name_list, persistable_var_names, op_type):
474 475 476
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
477
                    self._weight_op_pairs[var_name] = op_type
478 479 480
                else:
                    self._quantized_act_var_name.add(var_name)

481
        persistable_var_names = _all_persistable_var_names(self._program)
482
        for op in self._program.global_block().ops:
483
            op_type = op.type
484 485 486
            if self._is_full_quantize and \
                op_type not in self._quantizable_op_type:
                _logger.warning(op_type + " is not supported for quantization.")
487
            # For quantized ops, sample inputs and outputs
488
            if op_type in self._quantizable_op_type:
489
                collect_var_name(
490
                    _get_op_input_var_names(op), persistable_var_names, op_type)
491
                collect_var_name(
492 493
                    _get_op_output_var_names(op), persistable_var_names,
                    op_type)
494 495 496
            # For other op, only sample output scale
            elif op_type in self._out_scale_op_list:
                collect_var_name(
497 498
                    _get_op_output_var_names(op), persistable_var_names,
                    op_type)
499 500 501 502 503 504

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
505 506 507 508
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

509 510 511 512 513 514 515 516
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False

517
    def _sampling(self):
518
        '''
519
        Sample the min/max, abs_max or histogram in every iterations.
520 521
        '''
        if self._algo == "abs_max":
522
            self._sample_abs_max()
523
        elif self._algo == "min_max":
524 525 526
            self._sample_min_max()
        elif self._algo == "KL":
            self._sample_histogram()
527

528
    def _sample_abs_max(self):
529 530 531 532 533 534 535 536
        # Only calculate abs_max value for weight for once
        if self._quantized_var_abs_max == {}:
            for var_name in self._quantized_weight_var_name:
                var_tensor = _load_variable_data(self._scope, var_name)
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
537
                    if self._weight_op_pairs[
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
                            var_name] in _channelwise_quant_axis1_ops:
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_var_abs_max[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
            var_tensor = _load_variable_data(self._scope, var_name)
            abs_max_value = float(np.max(np.abs(var_tensor)))
            if (var_name not in self._quantized_var_abs_max) or \
                (abs_max_value > self._quantized_var_abs_max[var_name]):
                self._quantized_var_abs_max[var_name] = abs_max_value

555
    def _sample_min_max(self):
556 557
        if self._quantized_var_min == {} and self._quantized_var_max == {}:
            for var_name in self._quantized_weight_var_name:
558
                var_tensor = _load_variable_data(self._scope, var_name)
559 560 561 562 563 564
                if self._weight_quantize_type == "abs_max":
                    min_value = float(np.min(var_tensor))
                    max_value = float(np.max(var_tensor))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    min_value = []
                    max_value = []
565
                    if self._weight_op_pairs[
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
                            var_name] in _channelwise_quant_axis1_ops:
                        for i in range(var_tensor.shape[1]):
                            min_value.append(float(np.min(var_tensor[:, i])))
                            max_value.append(float(np.max(var_tensor[:, i])))
                    else:
                        for i in range(var_tensor.shape[0]):
                            min_value.append(float(np.min(var_tensor[i])))
                            max_value.append(float(np.max(var_tensor[i])))
                self._quantized_var_min[var_name] = min_value
                self._quantized_var_max[var_name] = max_value

        for var_name in self._quantized_act_var_name:
            var_tensor = _load_variable_data(self._scope, var_name)
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if (var_name not in self._quantized_var_min) or \
                (min_value < self._quantized_var_min[var_name]):
                self._quantized_var_min[var_name] = min_value
            if (var_name not in self._quantized_var_max) or \
                (max_value > self._quantized_var_max[var_name]):
                self._quantized_var_max[var_name] = max_value
587

588 589 590 591 592 593 594 595
    def _sample_histogram(self):
        for var_name in self._quantized_act_var_name:
            var_tensor = _load_variable_data(self._scope, var_name)
            var_tensor_abs = np.abs(var_tensor)
            bins = self._sampling_act_histogram[var_name][1]
            hist, _ = np.histogram(var_tensor_abs, bins=bins)
            self._sampling_act_histogram[var_name][0] += hist

596 597 598 599 600 601 602 603
    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
        for op in self._program.global_block().ops:
            if op.type in self._quantizable_op_type:
604 605 606 607 608 609 610
                for var_name in _get_op_input_var_names(op):
                    assert var_name in self._quantized_var_min
                    assert var_name in self._quantized_var_max
                    op._set_attr(var_name + ".min",
                                 self._quantized_var_min[var_name])
                    op._set_attr(var_name + ".max",
                                 self._quantized_var_max[var_name])
611

612
    def _collect_activation_abs_min_max(self):
613
        '''
614 615
        Collect the abs_min and abs_max for all activation. When algo = KL,
        get the min and max value, and then calculate the threshold.
616
        '''
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
        for var_name in self._quantized_act_var_name:
            var_tensor = _load_variable_data(self._scope, var_name)
            var_tensor = np.abs(var_tensor)
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if var_name not in self._sampling_act_abs_min_max:
                self._sampling_act_abs_min_max[
                    var_name] = [min_value, max_value]
            else:
                if min_value < self._sampling_act_abs_min_max[var_name][0]:
                    self._sampling_act_abs_min_max[var_name][0] = min_value
                if max_value > self._sampling_act_abs_min_max[var_name][1]:
                    self._sampling_act_abs_min_max[var_name][1] = max_value

    def _init_sampling_act_histogram(self):
        '''
        Based on the min/max value, init the sampling_act_histogram.
        '''
        for var_name in self._quantized_act_var_name:
            if var_name not in self._sampling_act_histogram:
                min_val = self._sampling_act_abs_min_max[var_name][0]
                max_val = self._sampling_act_abs_min_max[var_name][1]
                hist, hist_edeges = np.histogram(
                    [], bins=self._histogram_bins, range=(min_val, max_val))
                self._sampling_act_histogram[var_name] = [hist, hist_edeges]
642

643
    def _calculate_kl_threshold(self):
644
        '''
645
        Calculate the KL threshold of quantized variables.
646
        '''
647 648
        _logger.info("Calculate KL threshold ...")
        assert self._algo == "KL", "The algo should be KL to calculate kl threshold."
649 650

        # Abs_max threshold for weights
651
        for var_name in self._quantized_weight_var_name:
652
            weight_data = _load_variable_data(self._scope, var_name)
653
            if self._weight_quantize_type == "abs_max":
654
                weight_threshold = float(np.max(np.abs(weight_data)))
655 656
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
657
                if self._weight_op_pairs[
658 659 660 661 662 663 664 665
                        var_name] in _channelwise_quant_axis1_ops:
                    for i in range(weight_data.shape[1]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[:, i]))))
                else:
                    for i in range(weight_data.shape[0]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[i]))))
666 667
            self._quantized_var_kl_threshold[var_name] = weight_threshold

668 669 670 671
        for var_name in self._quantized_act_var_name:
            hist, hist_edeges = self._sampling_act_histogram[var_name]
            self._quantized_var_kl_threshold[var_name] = \
                self._get_kl_scaling_factor(hist, hist_edeges)
672 673 674

    def _update_program(self):
        '''
675 676 677
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
        Besides, save all kl threshold to the scale var node.
678
        '''
679
        _logger.info("Update the program ...")
680 681
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

682
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
683 684
        major_quantizable_op_types = []
        for op_type in QuantizationTransformPass._supported_quantizable_op_type:
685
            if op_type in self._quantizable_op_type:
686
                major_quantizable_op_types.append(op_type)
687 688 689
        transform_pass = QuantizationTransformPass(
            scope=self._scope,
            place=self._place,
690 691 692 693
            weight_bits=self._weight_bits,
            activation_bits=self._activation_bits,
            activation_quantize_type=self._activation_quantize_type,
            weight_quantize_type=self._weight_quantize_type,
694
            quantizable_op_type=major_quantizable_op_types)
695 696 697
        transform_pass.apply(graph)

        # use AddQuantDequantPass to insert fake_quant_dequant op
698 699
        minor_quantizable_op_types = []
        for op_type in AddQuantDequantPass._supported_quantizable_op_type:
700
            if op_type in self._quantizable_op_type:
701
                minor_quantizable_op_types.append(op_type)
702 703 704
        add_quant_dequant_pass = AddQuantDequantPass(
            scope=self._scope,
            place=self._place,
705
            quantizable_op_type=minor_quantizable_op_types)
706 707
        add_quant_dequant_pass.apply(graph)

708 709 710 711 712 713
        # save abs_max or KL threshold to scale var node
        if self._algo == "KL":
            scale_dict = self._quantized_var_kl_threshold
        else:
            scale_dict = self._quantized_var_abs_max
        for key, val in scale_dict.items():
714 715 716 717 718
            _set_variable_data(
                self._scope,
                self._place,
                key + ".scale",
                np.array(
719
                    [val], dtype=np.float32))
720 721 722 723 724
            _set_variable_data(
                self._scope,
                self._place,
                key + ".quant_dequant.scale",
                np.array(
725 726 727 728 729 730
                    [val], dtype=np.float32))

        # apply QuantizationFreezePass, and obtain the final quant model
        freeze_pass = QuantizationFreezePass(
            scope=self._scope,
            place=self._place,
731 732 733
            weight_bits=self._weight_bits,
            activation_bits=self._activation_bits,
            weight_quantize_type=self._weight_quantize_type,
734
            quantizable_op_type=major_quantizable_op_types)
735 736 737
        freeze_pass.apply(graph)
        self._program = graph.to_program()

738
    def _save_output_threshold(self):
739
        '''
740
        Save output threshold to the quantized op.
741
        '''
742 743 744 745 746 747 748 749 750 751 752

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
            op_node._set_attr(out_info_name, threshold_map[var_name])
            if op_node.type in self._quantizable_op_type:
                op._set_attr("quantization_type", quantized_type)

        def analysis_and_save_info(op_node, out_var_name):
753 754 755
            argname_index = _get_output_name_index(op_node, out_var_name)
            assert argname_index is not None, \
                out_var_name + " is not the output of the op"
756
            if self._algo == "KL":
757
                # For compatibility, we save output threshold by two methods.
758 759 760
                save_info(op_node, out_var_name,
                          self._quantized_var_kl_threshold, "out_threshold",
                          "post_kl")
761 762 763 764
                save_info(
                    op_node, out_var_name, self._quantized_var_kl_threshold,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
765 766 767
            elif self._algo == "abs_max":
                save_info(op_node, out_var_name, self._quantized_var_abs_max,
                          "out_threshold", "post_abs_max")
768 769 770 771
                save_info(
                    op_node, out_var_name, self._quantized_var_abs_max,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
772 773 774 775 776 777
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

778
        for op in self._program.global_block().ops:
779 780 781 782 783 784
            if op.type in (self._quantizable_op_type + self._out_scale_op_list):
                out_var_names = _get_op_output_var_names(op)
                assert len(out_var_names) == 1, "Post training " + \
                    "quantization only support one output for " + op.type
                for var_name in out_var_names:
                    analysis_and_save_info(op, var_name)
785

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
    def _collect_dynamic_quantize_op_threshold(self, target_ops_type):
        """
        Collect and save the weight threshold for dynamic quantize ops,
        such as lstm and gru.
        Args:
            target_ops_type(list): the op type of target ops
        Returns:
            None
        """

        target_ops = []
        for index in range(self._program.num_blocks):
            for op in self._program.block(index).ops:
                if op.type in target_ops_type:
                    target_ops.append(op)

        quantization_type = str("post_" + self._algo).lower()
        persistable_var_names = _all_persistable_var_names(self._program)
        for op in target_ops:
            for var_name in _get_op_input_var_names(op):
                if var_name in persistable_var_names:
                    var_data = _load_variable_data(self._scope, var_name)
                    threshold = float(np.max(np.abs(var_data)))
                    argname, index = _get_input_name_index(op, var_name)
                    op._set_attr(argname + str(index) + "_threshold", threshold)
                    op._set_attr("quantization_type", quantization_type)
                    op._set_attr("bit_length", self._weight_bits)

814
    def _get_kl_scaling_factor(self, hist, hist_edeges, num_quantized_bins=255):
815 816 817
        '''
        Using the KL-divergenc method to get the more precise scaling factor.
        '''
818 819
        ending_iter = self._histogram_bins - 1
        starting_iter = int(ending_iter * 0.7)
820 821
        bin_width = hist_edeges[1] - hist_edeges[0]

822
        P_sum = np.sum(np.array(hist).ravel())
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
        min_kl_divergence = 0
        min_kl_index = 0
        kl_inited = False
        for i in range(starting_iter, ending_iter + 1):
            reference_distr_P = hist[0:i].tolist()
            outliers_count = sum(hist[i:2048])
            if reference_distr_P[i - 1] == 0:
                continue
            reference_distr_P[i - 1] += outliers_count
            reference_distr_bins = reference_distr_P[:]
            candidate_distr_Q = hist[0:i].tolist()
            num_merged_bins = int(i / num_quantized_bins)
            candidate_distr_Q_quantized = [0] * num_quantized_bins
            j_start = 0
            j_end = num_merged_bins
            for idx in range(num_quantized_bins):
                candidate_distr_Q_quantized[idx] = sum(candidate_distr_Q[
                    j_start:j_end])
                j_start += num_merged_bins
                j_end += num_merged_bins
                if (idx + 1) == num_quantized_bins - 1:
                    j_end = i
            candidate_distr_Q = self._expand_quantized_bins(
                candidate_distr_Q_quantized, reference_distr_bins)
            Q_sum = sum(candidate_distr_Q)
            kl_divergence = self._safe_entropy(reference_distr_P, P_sum,
                                               candidate_distr_Q, Q_sum)
            if not kl_inited:
                min_kl_divergence = kl_divergence
                min_kl_index = i
                kl_inited = True
            elif kl_divergence < min_kl_divergence:
                min_kl_divergence = kl_divergence
                min_kl_index = i
            else:
                pass
        if min_kl_index == 0:
            while starting_iter > 0:
                if hist[starting_iter] == 0:
                    starting_iter -= 1
                    continue
                else:
                    break
            min_kl_index = starting_iter
        return (min_kl_index + 0.5) * bin_width

    def _expand_quantized_bins(self, quantized_bins, reference_bins):
        '''
        '''
        expanded_quantized_bins = [0] * len(reference_bins)
        num_merged_bins = int(len(reference_bins) / len(quantized_bins))
        j_start = 0
        j_end = num_merged_bins
        for idx in range(len(quantized_bins)):
            zero_count = reference_bins[j_start:j_end].count(0)
            num_merged_bins = j_end - j_start
            if zero_count == num_merged_bins:
                avg_bin_ele = 0
            else:
                avg_bin_ele = quantized_bins[idx] / (
                    num_merged_bins - zero_count + 0.0)
            for idx1 in range(j_start, j_end):
                expanded_quantized_bins[idx1] = (0 if reference_bins[idx1] == 0
                                                 else avg_bin_ele)
            j_start += num_merged_bins
            j_end += num_merged_bins
            if (idx + 1) == len(quantized_bins) - 1:
                j_end = len(reference_bins)
        return expanded_quantized_bins

    def _safe_entropy(self, reference_distr_P, P_sum, candidate_distr_Q, Q_sum):
        '''
        Calculate the entropy.
        '''
        assert len(reference_distr_P) == len(candidate_distr_Q)
        tmp_sum1 = 0
        tmp_sum2 = 0
        for idx in range(len(reference_distr_P)):
            p_idx = reference_distr_P[idx]
            q_idx = candidate_distr_Q[idx]
            if p_idx == 0:
                tmp_sum1 += 0
                tmp_sum2 += 0
            else:
                if q_idx == 0:
908 909
                    _logger.error("Fatal error!, idx = " + str(idx) +
                                  " qindex = 0! p_idx = " + str(p_idx))
910 911 912
                tmp_sum1 += p_idx * (math.log(Q_sum * p_idx))
                tmp_sum2 += p_idx * (math.log(P_sum * q_idx))
        return (tmp_sum1 - tmp_sum2) / P_sum
913 914 915 916


class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']
917
    _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max']
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
944
                               weight_bits=8,
945 946
                               weight_quantize_type="channel_wise_abs_max",
                               generate_test_model=False,
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
966 967
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
968 969 970 971 972 973 974
            weight_quantize_type(str, optional): quantization type for weights,
                support 'channel_wise_abs_max' and 'abs_max'. Set it as
                'channel_wise_abs_max', the accuracy performs better.
            generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
975 976 977 978 979 980 981 982 983
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
984
                "Input error:" + op_type + \
985
                " is not supported for weight quantization."
986
        assert weight_bits in [8, 16], \
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
            "Input error: weight_bits should be 8 or 16."
        assert weight_quantize_type in self._supported_weight_quantize_type, \
            "Input error: weight_quantize_type should in {}".format(
                self._supported_weight_quantize_type)

        quantized_model_dir = os.path.join(save_model_dir, "quantized_model")
        self._quantize_weight_to_int(quantized_model_dir, save_model_filename,
                                     save_params_filename, quantizable_op_type,
                                     weight_bits, weight_quantize_type, False,
                                     threshold_rate)

        if generate_test_model:
            test_model_dir = os.path.join(save_model_dir, "test_model")
            self._quantize_weight_to_int(
                test_model_dir, save_model_filename, save_params_filename,
                quantizable_op_type, weight_bits, weight_quantize_type, True,
                threshold_rate)

    def _quantize_weight_to_int(self, save_model_dir, save_model_filename,
                                save_params_filename, quantizable_op_type,
                                weight_bits, weight_quantize_type, for_test,
                                threshold_rate):
        """
        Generate quantized model or fake quantized model.
        """
        # Load model
1013 1014 1015 1016 1017 1018 1019 1020 1021
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
        quantized_ops = []
        for index in range(program.num_blocks):
            block = program.block(index)
            for op in block.ops:
                if op.type in quantizable_op_type:
                    quantized_ops.append(op)

        # Quantize weights
        persistable_var_names = _all_persistable_var_names(program)
        for op in quantized_ops:
            for var_name in op.input_arg_names:
                if var_name in persistable_var_names:
                    if weight_quantize_type == "abs_max":
                        self._weight_abs_max_quantization(
                            scope, place, weight_bits, threshold_rate, op,
                            var_name, for_test)
                    elif weight_quantize_type == "channel_wise_abs_max":
                        self._weight_channel_wise_abs_max_quantization(
                            scope, place, weight_bits, op, var_name, for_test)
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

        io.save_inference_model(
            dirname=save_model_dir,
            feeded_var_names=feed_list,
            target_vars=fetch_list,
            executor=exe,
            main_program=program,
            model_filename=save_model_filename,
            params_filename=save_params_filename)

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
    def _weight_abs_max_quantization(self, scope, place, weight_bits,
                                     threshold_rate, op, var_name, for_test):
        '''
        Use abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
        weight_data = _load_variable_data(scope, var_name)
        if abs(threshold_rate) < 1e-10:
            threshold_value = np.max(np.abs(weight_data))
        else:
            threshold_value = self._calculate_threshold(\
                weight_data, threshold_rate)
            weight_data[weight_data > threshold_value] = threshold_value
            weight_data[weight_data < -threshold_value] = -threshold_value
        scale = threshold_value / quantize_range
        quantized_weight_data = \
            np.around(weight_data / scale).astype(save_weight_dtype)

        # Set weight data
        if not for_test:
            _set_variable_data(scope, place, var_name, quantized_weight_data)
        else:
            dequantized_weight_data = \
                (quantized_weight_data * scale).astype(np.float32)
            _set_variable_data(scope, place, var_name, dequantized_weight_data)

        # Save info
        op._set_attr('quantization_type', 'post_weight_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", [scale])  # Save as list

    def _weight_channel_wise_abs_max_quantization(
            self, scope, place, weight_bits, op, var_name, for_test):
        ''' 
        Use channel_wise_abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
        weight_data = _load_variable_data(scope, var_name)
        if op.type == "mul":
            scales, quantized_weight_data = \
                self._mul_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        elif op.type in ["conv2d", "depthwise_conv2d"]:
            scales, quantized_weight_data = \
                self._conv_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        else:
            _logger.error(op.type + " is not supported by weight quantization")

        # Set weight data
        if not for_test:
            _set_variable_data(scope, place, var_name, quantized_weight_data)
        else:
            if op.type == "mul":
                dequantized_weight_data = \
                    self._mul_channel_wise_dequantization(quantized_weight_data, scales)
            elif op.type in ["conv2d", "depthwise_conv2d"]:
                dequantized_weight_data = \
                    self._conv_channel_wise_dequantization(quantized_weight_data, scales)
            else:
                _logger.error(op.type +
                              " is not supported by weight quantization")
            _set_variable_data(scope, place, var_name, dequantized_weight_data)

        # Save info
        op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", scales)

    def _conv_channel_wise_quantization(self, weight_data, quantize_range,
                                        save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
        quantized_weight_data = np.zeros_like(
            weight_data, dtype=save_weight_dtype)
        channel_num = weight_data.shape[0]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[i] = \
                np.around(weight_data[i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _conv_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For conv2d and depthwise_conv2d, dequantize the weights to fp32.
        '''
        dequantized_weight_data = np.zeros_like(
            quantized_weight_data, dtype=np.float32)
        for i in range(len(scales)):
            dequantized_weight_data[i] = \
                (quantized_weight_data[i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

    def _mul_channel_wise_quantization(self, weight_data, quantize_range,
                                       save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
        quantized_weight_data = np.zeros_like(
            weight_data, dtype=save_weight_dtype)
        channel_num = weight_data.shape[-1]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[:, i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[:, i] = \
                np.around(weight_data[:, i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _mul_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For mul, dequantize the weights to fp32.
        '''
        dequantized_weight_data = np.zeros_like(
            quantized_weight_data, dtype=np.float32)
        for i in range(len(scales)):
            dequantized_weight_data[:, i] = \
                (quantized_weight_data[:, i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
        hist, hist_edeges = np.histogram(
            input_abs, bins=histogram_bins, range=(0, np.max(input_abs)))
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width