affine_channel_op.cu 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef __NVCC__
16
#include "cub/cub.cuh"
17 18 19 20 21 22 23
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

template <typename T, framework::DataLayout layout, bool HasBias>
__global__ void KeAffineChannelCUDA(const T* x, const T* scale, const T* bias,
                                    const int C, const int HxW, const int num,
                                    T* y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? i / HxW % C : i % C;
    if (HasBias) {
      y[i] = scale[c] * x[i] + bias[c];
    } else {
      y[i] = scale[c] * x[i];
    }
  }
}

template <typename DeviceContext, typename T>
class AffineChannelCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* scale = ctx.Input<framework::Tensor>("Scale");
    auto* bias = ctx.Input<framework::Tensor>("Bias");

    auto* y = ctx.Output<framework::Tensor>("Out");
    y->mutable_data<T>(ctx.GetPlace());

    const framework::DataLayout layout =
        framework::StringToDataLayout(ctx.Attr<std::string>("data_layout"));
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    auto dims = x->dims();
    const int num = x->numel();
    int N = dims[0];
    int C = layout == framework::DataLayout::kNCHW ? dims[1]
                                                   : dims[dims.size() - 1];
    int HxW = num / N / C;

    const T* x_d = x->data<T>();
    const T* scale_d = scale->data<T>();
    const T* bias_d = bias->data<T>();
    T* y_d = y->data<T>();

    int block = 1024;
    int grid = (num + block - 1) / block;
Q
qingqing01 已提交
76 77 78

    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    grid = std::min(std::max(max_threads / block, 1), grid);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    if (layout == framework::DataLayout::kNCHW) {
      KeAffineChannelCUDA<T, framework::DataLayout::kNCHW,
                          true><<<grid, block, 0, dev_ctx.stream()>>>(
          x_d, scale_d, bias_d, C, HxW, num, y_d);
    } else {
      KeAffineChannelCUDA<T, framework::DataLayout::kNHWC,
                          true><<<grid, block, 0, dev_ctx.stream()>>>(
          x_d, scale_d, bias_d, C, HxW, num, y_d);
    }
  }
};

template <typename T, int BlockDim, framework::DataLayout layout>
__global__ void AffineChannelScaleBiasGradientCUDAKernel(
    const T* dy, const T* x, const int N, const int C, const int HxW, T* dscale,
    T* dbias) {
  const int outer_size = C;
  const int inner_size = N * HxW;
97
  typedef cub::BlockReduce<double, BlockDim> BlockReduce;
98 99 100 101 102 103 104 105 106 107 108 109 110
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    T ds_sum = 0;
    T db_sum = 0;
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      ds_sum += dy[index] * x[index];
      db_sum += dy[index];
    }
111 112 113 114 115 116
    __syncthreads();
    auto ds_out =
        BlockReduce(ds_storage).Reduce(static_cast<double>(ds_sum), cub::Sum());
    auto db_out =
        BlockReduce(db_storage).Reduce(static_cast<double>(db_sum), cub::Sum());
    __syncthreads();
117
    if (threadIdx.x == 0) {
118 119
      dscale[i] = ds_out;
      dbias[i] = db_out;
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    }
  }
}

template <typename DeviceContext, typename T>
class AffineChannelGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* scale = ctx.Input<framework::Tensor>("Scale");
    auto* bias = ctx.Input<framework::Tensor>("Bias");
    auto* dy = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));

    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dscale =
        ctx.Output<framework::Tensor>(framework::GradVarName("Scale"));
    auto* dbias = ctx.Output<framework::Tensor>(framework::GradVarName("Bias"));

    const framework::DataLayout layout =
        framework::StringToDataLayout(ctx.Attr<std::string>("data_layout"));
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

Z
Zeng Jinle 已提交
142 143
    auto dims = dy->dims();
    const int num = dy->numel();
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    int N = dims[0];
    int C = layout == framework::DataLayout::kNCHW ? dims[1]
                                                   : dims[dims.size() - 1];
    int HxW = num / N / C;

    const T* dy_d = dy->data<T>();
    const T* s_d = scale->data<T>();

    T* dx_d = dx ? dx->mutable_data<T>(ctx.GetPlace()) : nullptr;
    T* ds_d = dscale ? dscale->mutable_data<T>(ctx.GetPlace()) : nullptr;
    T* db_d = dbias ? dbias->mutable_data<T>(ctx.GetPlace()) : nullptr;

    const int block = 1024;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    int grid1 = (num + block - 1) / block;
    int grid2 = std::min(C, max_blocks);
    if (layout == framework::DataLayout::kNCHW) {
      if (dscale && dbias) {
Z
Zeng Jinle 已提交
163
        const T* x_d = x->data<T>();
164 165 166 167 168 169
        AffineChannelScaleBiasGradientCUDAKernel<
            T, block, framework::DataLayout::kNCHW><<<grid2, block, 0,
                                                      dev_ctx.stream()>>>(
            dy_d, x_d, N, C, HxW, ds_d, db_d);
      }
      if (dx) {
170
        KeAffineChannelCUDA<T, framework::DataLayout::kNCHW,
171 172 173
                            false><<<grid1, block, 0, dev_ctx.stream()>>>(
            dy_d, s_d, nullptr, C, HxW, num, dx_d);
      }
174
    } else {
175
      if (dscale && dbias) {
Z
Zeng Jinle 已提交
176
        const T* x_d = x->data<T>();
177 178 179 180 181
        AffineChannelScaleBiasGradientCUDAKernel<
            T, block, framework::DataLayout::kNHWC><<<grid2, block, 0,
                                                      dev_ctx.stream()>>>(
            dy_d, x_d, N, C, HxW, ds_d, db_d);
      }
182 183 184 185 186 187

      if (dx) {
        KeAffineChannelCUDA<T, framework::DataLayout::kNHWC,
                            false><<<grid1, block, 0, dev_ctx.stream()>>>(
            dy_d, s_d, nullptr, C, HxW, num, dx_d);
      }
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;

REGISTER_OP_CUDA_KERNEL(affine_channel,
                        ops::AffineChannelCUDAKernel<CUDA, float>,
                        ops::AffineChannelCUDAKernel<CUDA, double>);
REGISTER_OP_CUDA_KERNEL(affine_channel_grad,
                        ops::AffineChannelGradCUDAKernel<CUDA, float>,
                        ops::AffineChannelGradCUDAKernel<CUDA, double>);