/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. Indicesou may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef __NVCC__ #include "cub/cub.cuh" #endif #ifdef __HIPCC__ #include namespace cub = hipcub; #endif #include "paddle/fluid/framework/data_layout.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/platform/cuda_primitives.h" namespace paddle { namespace operators { template __global__ void KeAffineChannelCUDA(const T* x, const T* scale, const T* bias, const int C, const int HxW, const int num, T* y) { int gid = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; for (int i = gid; i < num; i += stride) { const int c = layout == framework::DataLayout::kNCHW ? i / HxW % C : i % C; if (HasBias) { y[i] = scale[c] * x[i] + bias[c]; } else { y[i] = scale[c] * x[i]; } } } template class AffineChannelCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* scale = ctx.Input("Scale"); auto* bias = ctx.Input("Bias"); auto* y = ctx.Output("Out"); y->mutable_data(ctx.GetPlace()); const framework::DataLayout layout = framework::StringToDataLayout(ctx.Attr("data_layout")); auto& dev_ctx = ctx.template device_context(); auto dims = x->dims(); const int num = x->numel(); int N = dims[0]; int C = layout == framework::DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1]; int HxW = num / N / C; const T* x_d = x->data(); const T* scale_d = scale->data(); const T* bias_d = bias->data(); T* y_d = y->data(); int block = 1024; int grid = (num + block - 1) / block; int max_threads = dev_ctx.GetMaxPhysicalThreadCount(); grid = std::min(std::max(max_threads / block, 1), grid); if (layout == framework::DataLayout::kNCHW) { KeAffineChannelCUDA<<>>( x_d, scale_d, bias_d, C, HxW, num, y_d); } else { KeAffineChannelCUDA<<>>( x_d, scale_d, bias_d, C, HxW, num, y_d); } } }; template __global__ void AffineChannelScaleBiasGradientCUDAKernel( const T* dy, const T* x, const int N, const int C, const int HxW, T* dscale, T* dbias) { const int outer_size = C; const int inner_size = N * HxW; typedef cub::BlockReduce BlockReduce; __shared__ typename BlockReduce::TempStorage ds_storage; __shared__ typename BlockReduce::TempStorage db_storage; for (int i = blockIdx.x; i < outer_size; i += gridDim.x) { T ds_sum = 0; T db_sum = 0; for (int j = threadIdx.x; j < inner_size; j += blockDim.x) { const int index = layout == framework::DataLayout::kNCHW ? (j / HxW * C + i) * HxW + j % HxW : j * outer_size + i; ds_sum += dy[index] * x[index]; db_sum += dy[index]; } __syncthreads(); auto ds_out = BlockReduce(ds_storage).Reduce(static_cast(ds_sum), cub::Sum()); auto db_out = BlockReduce(db_storage).Reduce(static_cast(db_sum), cub::Sum()); __syncthreads(); if (threadIdx.x == 0) { dscale[i] = ds_out; dbias[i] = db_out; } } } template class AffineChannelGradCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* scale = ctx.Input("Scale"); auto* bias = ctx.Input("Bias"); auto* dy = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dscale = ctx.Output(framework::GradVarName("Scale")); auto* dbias = ctx.Output(framework::GradVarName("Bias")); const framework::DataLayout layout = framework::StringToDataLayout(ctx.Attr("data_layout")); auto& dev_ctx = ctx.template device_context(); auto dims = dy->dims(); const int num = dy->numel(); int N = dims[0]; int C = layout == framework::DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1]; int HxW = num / N / C; const T* dy_d = dy->data(); const T* s_d = scale->data(); T* dx_d = dx ? dx->mutable_data(ctx.GetPlace()) : nullptr; T* ds_d = dscale ? dscale->mutable_data(ctx.GetPlace()) : nullptr; T* db_d = dbias ? dbias->mutable_data(ctx.GetPlace()) : nullptr; const int block = 1024; int max_threads = dev_ctx.GetMaxPhysicalThreadCount(); const int max_blocks = std::max(max_threads / block, 1); int grid1 = (num + block - 1) / block; int grid2 = std::min(C, max_blocks); if (layout == framework::DataLayout::kNCHW) { if (dscale && dbias) { const T* x_d = x->data(); AffineChannelScaleBiasGradientCUDAKernel< T, block, framework::DataLayout::kNCHW><<>>( dy_d, x_d, N, C, HxW, ds_d, db_d); } if (dx) { KeAffineChannelCUDA<<>>( dy_d, s_d, nullptr, C, HxW, num, dx_d); } } else { if (dscale && dbias) { const T* x_d = x->data(); AffineChannelScaleBiasGradientCUDAKernel< T, block, framework::DataLayout::kNHWC><<>>( dy_d, x_d, N, C, HxW, ds_d, db_d); } if (dx) { KeAffineChannelCUDA<<>>( dy_d, s_d, nullptr, C, HxW, num, dx_d); } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; using CUDA = paddle::platform::CUDADeviceContext; REGISTER_OP_CUDA_KERNEL(affine_channel, ops::AffineChannelCUDAKernel, ops::AffineChannelCUDAKernel); REGISTER_OP_CUDA_KERNEL(affine_channel_grad, ops::AffineChannelGradCUDAKernel, ops::AffineChannelGradCUDAKernel);